AFIT/GE/ENG/92D-23

AD-A259 587
MR

FACE RECOGNITION WITH NEURAL NETWORKS

THESIS

Dennis Lee Krepp

Captain, USAF o DTIC

AFIT/GE/ENG/92D-23 ELECTE
JANO 7 1993

Approved for public release; distribution unlimited

93 1 04 156




AFIT/GE/ENG/92D-23

FACE RECOGNITION WITH NEURAL NETWORKS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Electrical Engineering | Accesion For
NTIS CRA&I g
DTiC TAB
Unanricunced 0

Justification

By

Dennis Lee Krepp, B.S.EE. Dist ibution |

Captain, USAF Availability Codes

. Avail and/or
Dist Special

December, 1992 A-I I

Approved for public release; distribution unlimited




Acknowledgments

I would like to thank my thesis advisor, Dr. Steve Rogers, and the rest of my thesis committee,
Dr. Dennis Ruck, Dr. Matthew Kabrisky, and Dr. Mark Oxley. Their help made this thesis possible and
the experience rewarding. A special thank you goes to Dr. Ruck who provided the backpropagation

software that was the foundation for all the programming that followed.

I would like to thank Capt (now Dr.) Kevin Priddy and Capt Ken Fielding for their answers to
my many questions. I want to thank the rest of the Face Group, Capt Kevin Gay and Capt Ken Runyon,
for their support and humor during this research effort. Their friendship will be treasured always. 1
also wish to to thank Dan Zambon and Dave Doak for keeping the computers up and running at all

hours.

Finally, I want to thank my family, especially my lovely wife, Karen, for their support during

the past year and a half. Without them, none of this would have been possible.

Dennis Lee Krepp




Table of Contents

Page

Acknowledgments . . . . . . . . . L ii
Tableof Contents . . . . . . . . . . v i i v it ittt e e e e e e e il
Listof Figures . . . . . . . . . o i it i e i e e e e e e e e vii
Listof Tables . . . . . . . . . . o i i i it e e e e e e e e e e e viii
ADBSHACt . . . . . . . i e e e e e e e e e e e e e ix
L ProblemDescription . . . . . . . . .. . ... ... ... e e 1-1
1.1 Imtreduction . . ... ... ... .. .. ... 0uiiieeunnon 1-1

1.2 Background . . . ... ... ... .. ...ttt 1-2

1.2.1 Turk and Pentland at the MIT MediaLab. . . . . . . . .. 1-2

1.2.2 FaceRecognitionatAFIT. . . . ... ........... 1-2

123 CottrellatUCSD. . . . . . . ... ... ... 1-3

1.24 Los Alamos National Laboratory. . . ... ........ 1-3

1.3 ProblemStatement . . . . . ... .................. 1-3

14 ResearchObjectives . . . ... ................... 14

1.5 Assumptions . . . . . ... ... ... ... 14

16 ScopeandLimitations . . . .. ................... 1-5

1.7 Standards . . . . . . . .. ... e e e 1-5

1.8 Approach/Methodology . ... ................... 1-5

19 Overview . . . . . . . . . . .. e e 1-5




1L Literature Review

22
23

24

3.5
36
37

The Biology of FaceRecognition . . . . . . ... ..........
Feature Extraction and Data Compression . . . . ......... '
2.3.1 Principal Component Analysis(PCA). . . . .. ... ...
23.2 PCA using aLinear Neural Network. . . ... ... ...

233 Feature Extraction and Data Compression in Nonlinear
Networks . . ... ...........00vu...

234 Karhunen-Lotve Network for Feature Reduction . . . . .
Neural Networks for Face Recognition . . . . . ... ... .....
24.1 Cottrell NeuralNetwork. . . . . . ... ..........
242 Backpropagation Neural Network for Face Verification. . .
243 Additional Network Research . . ... ..........

Algorithm Development . . . . . . ... ... ... ........
Feature Extraction and Classification Using Identity Networks . . .
Verification and Classification Using Backpropagation . . . . . ..
341 SingleDay . ............00iiiiii..
342 Multiple Day Verification . . . . . ... ..........
3.43 Multiple Person Recognition . . . . ... .........
Neural Network Classification versus Karhunen-Lodve Transform .

iv

--------------------------------

2-1

2-1

24
24
2-5

29
2-12
2-14
2-14
2-16
2-19
2-19

3-1
3-1
32
3-3
3.5
3.5
36

L&



Appendix A.

4.2 Feature Extraction and Classification Using Identity Networks . . .
42.1 FeatureExtraction . . ... ................
42.2 Classification Using Identity Network Extracted Features .
423 Identity Networks and Multiple Day Cata Classification . .
4.3 Verification and Classification Using Backpropagation . . . . . ..
431 SingleDayVerification . . . . .. .............
43.2 Multiple Day Verification . . . . . . ... ... ......
4.3.3 Multiple Person Recognition . . . . ... ... ......

44 Classification using raw data, Karhunen-Lodve transform features,
and identity network extractedfeatures . . . . . . ... ... ...

45 CodeDevelopment . . . . . . ... ...........0000c..

46 SUMMATY . . . . . . o i it ittt e e e e e e e e

51 General . . . .. ... e e e
5.2 Multiple Day Verification . . . ... ................
53 IdentityNetworks . .. .......................
54 MultipleClassRecognition . . . . . . ................
5.5 Neural Network Extracted Featuresversus KLT . . ... ... ..

Al Makefile .............. ... ... i,
A2 dkmainc ... ... . ... e e e
A3 backpropx.c . . . . . it e e e e
A4 dkioxc . ... .. ... e e e e e
< V0 T
AbG PSX.C . . . . i e i e e e e e e e

4-1
4-1
41
41
43
4-7
4-8
4-8
4-10
414

4-15
4-17
4-17

5-1
51
51
52
53
53




...........................................

Page

AT wutilscc . . . ... e e e e e e e e A-39
A8 display.c. . . . . . ... e e e e e e e e A-45
A9 globals_h . . . ... ... ... e . A-46
AlOmacrosh . .. ... . ... ... ... A-46
Aldlglobalsh . ... ... ... ... .. .. .. iieeie.. A48
Al2makedata.c . . . . . . .. . e e e e e e e e e A-49
....................................... BIB-1
VITA-1




Figure
2.1.
22.
23.
24.
25.
2.6.
27.
28.

3.1.
3.2

4.1.
42
43.
44.
45.
4.6.

List of Figures

Page
OjaPCANetwork . . . . ... ... . . ittt ittt 2-6
APEXNetwork . . . . . . . ... . . i e e e e 2-7
S-LayerNetwork . . . . . . . . . . i i ittt e e e e e e e 2-11
3-LayerNetwork . . . . . . . . o o i i i i e e e 2-11
Network Architecture for Karhunen-Loéve Feature Extractor. 37) .. .. . ... 2-13
Cottrell Neural Network for Face Recognition . . . . . . ... ... ....... 2-16
Holons derived by PCA from hidden unitresponses. (§) . .. .......... 2-17
Los Alamos National Laboratory Setup . . . . . . ... ... ... ... .... 2-18
4-Layer Feature Extraction/Classification Network . . . . ... ... .. .. .. 33
Image compression, feature extraction and reconstruction . . . . ... .. .. .. . 34
Non-smooth Identity Network Leamning . . . . . .. ............... 4-2
Slow Identity Network Leamning . . . . . . ... ... ............. _ 4-3
Identity Network Learning, Eta=Varying . . . . ... .............. 44
Identity Network: Input images versus reconstructed outputimages . . . . . . .. 4-5
Original, Scaled, and ShiftedImage . . . . . ... ................ 4-12
Identity Network: Input images versus reconstructed output images using Motion
Segmentation . . . . .. ... e e e 4-16




List of Tables

Table Page
4.1. Average MSEofanldentityNetwork . . . . ... ... ... .......... 43
4.2. Classification Accuracy Using Identity Network Extracted Features as inputs to a

Cottrell (no hidden layer) backpropagationnetwork . . . . . ... ... ... .. 4-6
4.3. Classification Accuracy Using Identity Network Extracted Features as inputs to a

single hidden layer backpropagationnetwork . . . ... .. ... ... ... .. 47
4.4. Classification Accuracy Using Identity Network Extracted Features of Multiple Day

Data . ... ... e e e e e e e e 4-8
4.5. Classification Accuracies for Single day verification of 3 target subjects . . . . . . 49
4.6. Classification Accuracies for Multiple day verification of 3 target subjects . . . . . 4-10
4.7. Classification accuracies of original images versus scaled and shifted versions of

oniginalimage . . . . . . . . .. .. e e e e e 4-11
4.8. Classification Accuracies for Multiple Day Verification using data sets composed of

50% target/S0% nontargetimages . . . . . . . ... ... e e e e e 4-13
4.9. False Acceptance Testing of Multiple DayData . . . . ... ........... 4-14
4.10. Classification Accuracies for Multiple Classes using raw image data as inputs . . . 4-15

4.11. Classification Accuracies for raw image data versus Karhunen-Lodve transform
extracted features versus identity network extracted features. . . . . . ... ... 4-18

viii



AFIT/GE/ENG/92D-23

Abstract

The purpose of this study was to investigate and implement a neural network for face verification
and classification. The research concentrates on developing a neural network based feature extractor
and/or classifier which can be used for authorized user verification in a realistic work environment.
Performance criteria such as recognition accuracy, system assumptions, training time, and execution
time were analyzed to determine the feasibility of a neural network approach. Specifically, data was
collected using a camcorder with automatic intensity compensation.y Additionally, two segmentation
schemes were used for data collection: manual segmentation and motion-based, automatic segmenta-
tion. The data consisted of over 2000, 32x32 pixel, 8 bit gray scale images of 52 subjects where each
subject had from two to ten days worth of data collected. The data base was then used to create a
number of training and test sets that varied by class size, training set composition, number of images per
class, and so on. The training and test sets were then used to train and test the classification accuracy of
the following networks: a back propagation network using the raw data as inputs; a back propagation
network using Karhunen-Lo2ve Transform coefficients, computed from the raw data, as inputs; and a

back propagation network using features extracted by an identity network as inputs.

The results of the various network tests indicate that identity network extracted features performed
well for single day captured data and poorly on multiple day data. Classification using the various
networks, in general, performed well on constrained, single day captured, data bases but performed
poorly when using data gathered over multiple days . For the multiple day problem, a verification
network using a single hidden layer with backpropagation performed very well and was found to be

most suitability for use in a face verification system.

ix




FACE RECOGNITION WITH NEURAL NETWORKS

I. Problem Description

1.] Introduction

Autonomous face recognition is the process of locating and identifying faces in a scene using
pattern recognition techniques. While humans recognize faces many times a day with apparent ease,
automating this process has challenged researchers for the past two decades. What does an automated

face recognition system offer us to warrant the years of research this problem has received?

A system that automatically recognizes faces would be useful for several reasons. From a security
perspective, an automatic face recognition system could enhance current access control systems by
authenticating a users identity (32). Examples of such access control systems are secure computer
systems, bank automatic teller machines, and automatic card readers. In fact, any organization or
system that permits access based on a person’s identity would find a face recognition system useful
(32). Other security applications for a face recognition system would be criminal identification and
scanning airports for terrorists. Finally, this system could be adapted for use in a speech recognition
system or a visual communications system (32).

The remainder of this problem description begins with a background review of face recognition
as it relates to pattern recognition and this thesis. 1nis is followed by the problem statement, research
objectives, assumptions, scope and limitations, and standards. The approach to the problem is then

discussed and the chapter concludes with an overview of the remaining chapters.

1-1




1.2 Backgroand

This section briefly discusses the pattern recognition process and then highlights some of the
current research in the area of autonomous face recognition. The research highlighted below will be

discussed in detail in chapter two but is included here for completeness.

Traditionally, pattern recognition is broken down into three areas: segmentation, feature extrac-
tion, and classification (38). Segmentation is the first step; it is finding regions of possible signals. The
second step is feature extraction and in this step we search for the most important or significant =atures
of the regions passed by the segmentor which can be used in the final step, classification. Classification
compares the extracted features to those of previously identified objects and identifies the object as one
of the previously identified classes. For this research the regions we desire to segment and identify are

faces but the approach is the same whether we are using faces, trucks, tanks, jeeps, or words in speech.

1.2.1 Turk and Pentland at the MIT Media Lab. Matthew Turk and Alex Pentland, from the
Massachusetts Institute of Technology Media Lab, have implemented an autonomous face recognition
system that also makes use of the Karhunen-Loéve Transform (40). While their system performs well,
it has limited application because of the enormous amount of computational power necessary to operate

the system—at present, the system requires three dedicated, high speed processors.

1.2.2 Face Recognition at AFIT. Face recognition at AFIT began in 1985 with early systems
that were slow and required a significant amount of human intervention (31, 35). Through the years,
various improvements were added and the system has evolved into what it is today (18, 32 27) The
current system is similar to the MIT system being developed by Turk and Pentland (36). However, the

AFIT system has one major improvement over the MIT system. That is, the current AFIT preprocessor




incorporates a centering routine and a gaussian window routine. These routines center the image
and draw a gaussian window around the image, thereby de-emphasizing the background. With this
improvement, the current AFIT system is 95 percent successful at identifying 55 face images (36). The

current AFIT system is used as a benchmark for this research effort.

1.2.3 Cottrell at UCSD. Garrison Cottrell of the University of California at San Diego has
been developing a neural network model approach to face recognition (11). His model is trained in a
two step approach that uses an identity network for feature extraction and a single layer backpropagation

network for classification. He has shown this network to be successful on limited databases.

1.2.4 Los Alamos National Laboratory. Another neural network approach to face recogni-
tion is being pursued at the Los Alamos National Laboratory (25). The lab uses a standard one-hidden
layer network trained by backpropagation using raw image data as inputs. Currently, the network is

limited to two class problems on a constrained data base but the preliminary results are very respectable.

1.3 Problem Statement

This research effort will focus on improving the classification performance and speed of the
autonomous face recognition system by implementing the feature extraction and classification phases
cf the recognizer in a neural network. The segmentation phase of the recognizer is being researched in

a collateral thesis by Captain Kevin Gay (13).




1.4 Research Objectives

The objective of this research is to improve the algorithm for feature extraction and classification
of faces in an autonomous face recognition system. Specifically, four network configurations will be

developed and compared:

¢ An identity network for data compression and feature extraction,
o A back propagation network using the raw data as inputs,

e A back propagation network using Karhunen-Loeve Transform coefficients, computed from the

raw data, as inputs,

e And 3-layer and 4-layer feature extraction and classification networks using back propagation

and raw data inputs.

1.5 Assumptions

e The distance from the subject to the camcorder is constant, with the exception of normal head

movement.
e A friendly user is assumed, ic. the head orientation is face front.
o The network is expected to run on a Sun workstation.

o If using automatic segmentation . ..

- the face has been properly segmented from the background.

- preprocessing to center and gaussian window the face has been accomplished.

o If using manual segmentation . . .

14




~ the face has been manually centered in the image.

~ preprocessing to gaussian window the face has been accomplished.

1.6 Scope and Limitations

The scope of this thesis is to investigate the limitations of several new algorithms used for

autonomous face recognition. All conclusions are based on test data.

1.7 Standards

The performance criteria for the algorithms are classification accuracy, user interaction, and

modularity. However, accuracy is the most important of these criteria.

1.8 Approach/Methodology

A software environment will be developed and executed on a Sun SPARCstation2 that combines
existing software with new software written in ANSI C. All algorithms will be developed with mod-
ularity as a key consideration. Data for training and testing will be gathered under as many varying

conditions as possible to test the robustness of the algorithms.

1.9 Overview

Chapter Two presents a review of current literature related to face recognition systems with
primary emphasis on feature extraction and classification. Chapter Three provides a detailed description
of the methodology used in this thesis, and Chapter Four provides test criteria and results. Chapter

Five presents conclusions based on the test results and makes recommendations for future study.



II. Literature Review

2.1 Introduction

This review examines some of the current literature in the area of autonomous face recognition.
Face recognition research over the past several years falls into two categories: recognition using

features and re-ognition using the whole face or holistic approach.

Face recognition using features was first attempted by L. D. Harmon in the early 1970s. He
extracted features from profiles to identify the faces. His features were defined as the distance from the
tip of the nose to the mouth, the distance from the nose to the chin, the distance from the eyes to the nose
and other similar measurements (16). In addition to Harmon’s method, other types of face recognition
using features involves segmenting a face and then extracting features from the segments. Whatever
the method, face recognition using features continues today with researchers all over the world (42, 2).
The second category of face recognition is the holistic approach. Research in face recognition has
moved towards a holistic point of view with researchers at the Massachusetts Institute of Technology
(MIT) (40, 39), the University of California San Diego (UCSD) (11, 5) and AFIT (36, 15). The holistic
approach still involves extracting features, but the features, which are extracted using some type of
principal component analysis, are now taken from the entire face image, not just segments or profiles.

This research is based on the holistic approach and it is what will be discussed in the following sections.

The remainder of this review begins with some brief biological notes on human face recognition.
This is followed by a discussion of feature extraction and data compression using principal component
analysis and neural networks. The review continues with discussions on several networks used
for face recognition which include the Cottrell network, a standard multiple layer perceptron using

backpropagation, and the Tarr/Ruck network for Karhunen-Lodve transformations and classification.

2-1




Finally, several anecdotes are discussed that, while not directly related to this research, are still part of

the face recognition literature and should be mentioned.

2.2 The Biology of Face Recognition

How does the brain accomplish face recognition? This is still a mystery but we are learning
more each day. Experts believe that the biological process of face recognition occurs on the underside
of both hemispheres of the brain in the temporal and occipital lobes (14). In other words, this process
is localized (found in a specific area) in our brains. This theory is supported by the work of Rolls,
Baylis, Hasselmo and Nalwa in their study of the response of specific neurons to faces (28). They
tested a group of face responsive neurons in macaque monkeys and recorded the neuronal responses
(action potential spikes per second) to a set of face stimuli and non-face stimuli. The results of their

study indicate that there are neurons that react primarily to faces.(28).

Localization is also supported by the work of J. C. Meadows and A. R. Damasio in their studies
of individuals who have lost the ability to recognize faces, a condition known as prosopagnosia. Both
researchers agree that patients with prosopagnosia, when they have come to autopsy, always have
bilateral lesions in the occipito-temporal regions of their brains (8, 20). Conversely, patients with
bilateral lesions in other portions of the brain (ic., occipito-parietal region) do not have prosopagnosia.
This also supports, albeit in a limited manner, the notion that the process is localized. Accepting
localization as fact, what information does this area of the brain require to recognize faces?

One theory, based on psychological experimentation, suggests that we store the information for
faces in a global to local scheme (41). In this experiment subjects were first asked to classify images
as faces or non-faces and the time to classify faceness was recorded. Then each subject was asked

to identify familiar faces which were either distinctive/unusual or typical faces. It was found that

2-2




faceness could be assessed very quickly while recognition took longer. Also, a distinctive face could
be identified more quickly than a typical face. As such, it was proposed that the difference information
(ie. , color of eyes, shape of nose, hair style, etc. ) is used in the identification process and the path.
Information that is the same (ie. , the general shape of a face, two eyes, two ears, etc. ) is used at a higher
level in the recognition process and is not stored for each particular face. This could be considered a
global to local type process which fits our human experience with face recognition because we often
say that a person looks like so and so except for their eyes or nose, etc. This global to local idea is
also supported in the prosopagnosia studies. Individuals with prosopagnosia can still identify a face as
a face, but they can not identify who the face belongs to. In fact, many prosopagnosia patients also
have difficulties with recognition of other objects such as a particular make of car or truck. As with the
faces, they can identify a car as a car but they can not tell what specific type of carit is (8). This implies
that we process general information first and then get down to the specifics for the actual identification

process, but what are the specifics?

Experts agree that something is stored or encoded in the face recognition neurons; however, they
disagree as to what that something is. One theory is that the information for a particular face is stored
in a grandmother cell (28). In other words, all the information for a particular person is encoded in a
single cell (neuron) and when we find that cell we know who the person is. A second theory, supported
by the work of Rolls and his colleagues is that the information for recognizing a face is stored in a coded
ensemble of neurons and these codes are recomputed whenever a new face is added to the system (28).
This theory was tested by recording the activity of face responsive neurons to a set of known faces and
then adding a novel face to the set and recording the responses to this new set. The tests indicated that
adding a new face alters the steady state response of some of the neurons in question for a short time

and then they reach a new, statistically different, steady state (28). This implies that information for

23




face recognition is stored in our face neurons and we know who an individual is based on the firing
pattern of this group of neurons. This also suggests that the entire code is changed, albeit very quickly,

each time a new face is added to the system.

In any case, the biological theories surrounding face recognition are as varied as the number of
researchers. The accepted theory today is that there are specific face recognition neurons in our brains
and the global (faceness) to local (identification) idea is gaining momentum. From a pattern recognition
point of view, this global to local idea could be considered data compression, which is important to the

design of a face recognition system.

2.3 Feature Extraction and Data Compression

Feature extraction and data compression are important problems in pattern recognition and image
analysis. Many times the goal is to find a set of features that represent the data as closely as possible and
compress the data at the same time. There are many approaches to this problem and one of the more
well known is Principal Component Analysis (PCA). Likewise, this problem has been addressed in
linear and nonlinear PCA neural networks and in autoassociation networks as an unsupervised learning

task (24). Each of these will be discussed in the following sections.

2.3.1 Principal Component Analysis (PCA). In general terms, PCA is a statistical method
used for extracting features from a set of data with high dimensionality. It is a solution to the curse of
dimensionality problem found in pattern recognition (9). PCA is a linear, orthogonal transformation or
projection of the data onto a new coordinate system where the axis are uncorrelated and the maximum
variance of the original data is found in only a small number of coordinates (12). Dimensionality

reduction is achieved in this space by taking the coordinates which have the maximum variance and

24



leaving out the coordinates with minimum variance. In mathematical terms, the basis vectors of the
new coordinate system are the eigenvectors of the covariance matrix of the data and the variances
are the comesponding eigenvalues (40). So in terms of PCA, the best projection, in terms of mean
squared error of reconstruction, from an M to an N dimeznsional space, where M >> N, is then the

N dimensional space which represents the N eigenvectors with the largest eigenvalues.

Researchers at the MIT Media Lab and AFIT use principal component analysis in their holistic
approach to face recognition because it is believed that specific features, such as eyes or nose, may not
be as important as the overall pattern of the face when it comes to recognition. A detailed review of
PCA using the Karhunen-Loéve transform can be found in a masters thesis by Pedro Suarez (36). This
approach is supported by the physiology and psychology of the face recognition process (40, 41). While
the above process is mathematically sound, calculation of eigenvectors and projection coefficients is
computationally expensive. As such, the MIT face recognition system is run using three computers:
a Datacube Image Processor, a Sun 3/160, and a Sun Sparcstation. This system can perform the
recognition task at a rate of two or three times a second (40) but the system size makes it impractical
for current applications. Like the MIT system, the AFIT system is hosted on multiple computers.
The preprocessing software is hosted on a NEXT computer and a Silicon Graphics computer, and the
remainder of the software runs on a second Silicon Graphics computer. However, even with multiple
computers, the process still takes several minutes to run. The question becomes how do we improve
the speed of the system without giving up any of the accuracy? The answer may be a neural network

approach to PCA.

2.3.2 PCA using a Linear Neural Network. When considering a neural network approach

to PCA a starting point in much of the literature is the Oja algorithm (22). His network model, shown in

2-5




Figure 2.1, consists of a single linear neuron unit that uses a Hebbian type of learning rule. He showed
that if the input vectors are a stochastic process this network tends to extract the largest principal

component from the input vectors. This corresponds to the eigenvector in the covariance matrix that

has the largest eigenvalue.
1
}
2 q,
y
q m
*m

Figure 2.1. Ojalinear PCA network which converges to the largest principal component of a stationary
input sequence (12).

The output of Oja’s net, y, and the learning rule for updating the weights, g;, are

TEDITES (v}

=1
Agi = B(ziy ~ 9:v°) 2.2)

where z;y is the Hebbian term that strengthens the connections when the input and the output are
correlated. The second term, —g;y/?, is used to prevent instability and makes }° g7 approach 1. Training

the net in this manner maximizes the variance of the output given the constraint that 3~ ¢7 = 1. The

26




disadvantage of the network is that it will only find the first principal component of the data set (12)

and in many cases more principal components are required in order to be useful for a given problem.

The research continued and several algorithms have been developed that find multiple principal
components of a set of data; one of the more recent algorithms is the Adaptive Principal-component
EXtractor (APEX) (17). APEX was proposed by Kung and Diamantaras in 1990 and is stated to
be recursive and adaptive in that, given the first m — 1 principal components, it will find the m**
component. Additionally, they show that the m*® component is the largest component which is
orthogonal to the previous m — 1 components. Their network, shown in Figure 2.2, combines the
properties of Oja’s linear PCA net with a decorrelation scheme proposed by Foldiak in (12) that causes

the network to work as a whitening filter.

Figure 2.2. APEX network: solid lines denote weights p;, w; and are trained at the m*" stage. (Note
that w; asymptotically approach zero as the network converges) (17).

The outputs of the network are

y=Pz 23)

Ym = pT + Wy (2.4)

27




where z is the input vector, y is the output vector representing the first m — 1 output components, P
is the matrix of p; ; weights of the first m — 1 components, and p is the row vector of the p,, ; weights

of the m;, output.

The equations for the m,;, component then become

Ap = B(ymz” — Y2p) (2.5)

Aw = —y(ymy" + i w) 2.6)

where 3 and « are positive learning rates.

Finally, if the above equations are expanded for each individual weight, the resulting equations

Apl'»j = ﬁ(ymzj - yfan,j),j =1l...n Q.7

Aw; = —Y(ymy; + ypw;), i =1...m-1. @8

A review of these equations shows that equation 2.5 is simply Oja’s hebbian update rule which
was shown in (17) to force the outputs to the dominant principal components, and equation 2.6 is an
anti-hebbian rule which was shown to cause the m,;, output to be orthogonal to (or uncorrelated from)
the previous m — 1 components. Results of tests of APEX indicate that the principal components it
extracts are almost perfectly normalized and orthogonal to one another and are very close to the actual
components found using statistical PCA (17).

In addition to APEX, other algorithms for use in linear neural networks have been proposed

for PCA. Sanger (34) proposed an algorithm that uses non-local information which complicates the

2-8




analysis and Foldiak (12), mentioned earlier produces a set of vectors that span the same space as the
principal components but are not the exact principal components (1). Additionally, an algorithm based
on Successive Application of Modified Hebbian (SAMH) learning was proposed recently (1) which is
shown to extract the principal components in an adaptive manner, similar to APEX, but is claimed to

converge much more quickly.

PCA in linear networks is also supported by the work of Baldi and Hornik who showed that the
error surface for this linear type network has a unique minimum that corresponds to the projection onto
the subspace generated by the principal conponents of the input data set (3). However, they also state
that the optimum solution using principal components could also be obtained using other well-known
algorithms for computing eigenvalues and eigenvectors, and by numerical analysis standards, these
algorithms are superior to using a linear neural network to extract principal components (3). Likewise,
given data sets containing outliers, the linear networks have been shown to degenerate (19). With
this in mind, why not disregard the notion of back propagation neural networks for feature extraction
altogether? The answer: in addition to the simplicity of error back propagation, it can be applied to
nonlinear networks, discussed in the next section, which have been shown to handle the outlier problem
(19, 6). Additionally, it is very successful in a variety of other problems where there is no a priori

knowledge of the structure of the mathematical properties of the ideal solution (3).

' 2.3.3 Feature Extraction and Data Compression in Nonlinear Networks In applications
like pattern recognition and speech recogaition an important problem is to find the relevant features
in order to compress the data and still allow for correct classification or representation of the data
(23). A reasonable requirement in data compression is that the original pattern can be restored from

the compressed data with some acceptable level of error. This implies that feature extraction is data

29




driven and independent of any pattern and in terms of neural networks, this is an unsupervised or
selfsupervised learning task (23). One approach to the feature extraction problem has been the use
of nonlinear autoassociation neural networks which have well-known approximation properties, can
be expected to improve performance (23) and can solve the encoding problems where strict principal
component analysis is degenerate (6). These networks are generally feedforward 3-layer, Figure 2.4,

or 5-layer, Figure 2.3.

The 5-layer network of Figure 2.3 is believed to be more robust because it can theoretically
compute any continuous mapping from inputs to the second hidden layer and another mapping from
the second hidden layer to the output. The first and third lsyers are nonlinear (usually sigmoidal)
and layers one, three, and five are linear. The output of layer three (p units), can now be used as the
extracted features which are inputs to a classifier. The mapping from layer one to two can be considered
a nonlinear PCA, and the mapping from two to three can be considered a linear PCA. In this case the
dimensionality was reduced from n to p. However, a significant problem with this network is that the
number of units in the nonlinear layers must be large, N >> n, in order to get good approximation
capabilities for reconstruction (23). This constraint can be a problem for any network when training

time is considered, especially if the number of inputs is already large’.

An alternative to the 5-layer network is the nonlinear 3-layer network of Figure 2.4 which is
also one solution to the training time problem of a 5-layer network. The 3-layer nonlinear network has
hidden units that develop weight vectors that are believed to span the principal subspace of the input
vectors, ie. they develop a distributed representation of the principal components (7). This result was

found empirically by presenting the eigenvectors of the input images as inputs to the network (6). In

1For example, assume the input image is 32x32 (1024 pixels), the second layer and fourth layers of net are also 1024
nodes (not larger as is suggested), and the third layer is only 40 nodes, this network is estimated, conservatively, to require
80 days to train (based on current run times for similar networks on Sun workstations, see chapter 4).

2-10




] =
1=

n p n
I:I Wi, || w2 ] W, W{[I
X h y

S(.) S(.)

Figure 2.3. S-layer network with linear and nonlinear layers. The number of units in a layer is given
above the box, with N >> n > p, and the output is given below the box. (23).

L n
N
Wi D w2
s L
X y

Figure 2.4. 3-layer network with nonlinear hidden and output layers. The number of units in a layer
is given above the box and the output is given below the box.

other words, if the network is treated as a matrix M, where M represents the learned weights of the

input layer, then find E’ such that

’

E =ME 29

where E is the matrix formed by the £ = N, Karhunen-Love generated eigenvectors of the input
image in descending eigenvalue order as the columns. If the network spans the principal subspace of

dimension k, then E and E’ are related by

I'=EET (2.10)

2-11




where I' is the identity matrix. The results of this technique show a noisy first component with the rest
of the components being slightly shortened (ie. the diagonal entries of I are slightly less than 1) (6).
It is believed that the hidden units develop a distributed representation of the principal components of
the input data because the variances of the output activations of the hidden units are distributed more

evenly than the variances of the components in the strict Karhunen-Lo2ve transform (6).

It has been suggested that reducing the dimensionality with a 3-layer network is no better
than using the standard Karhunen-Lo&ve transform (21), however, this net has been used for image
compression with good results (23, 5, 6, 7) and it is believed that the advantages of the nonlinearity

will come out when the problem is nonlinear (6).

2.3.4 Karhunen-Lotve Network for Feature Reduction A network was developed by Gre-
gory Tarr and others at the Air Force Institute of Technology that performs feature reduction using a
variation on the Karhunen-Lo2ve transform (37). The network, shown in Figure 2.5, is described in
detail in (37) but the idea is as follows. Every random vector, X, in a data set can be represented by a

linear transformation of X with a matrix, A, such that

X =AY 2.11)

where A is composed of the normalized eigenvectors of the data, X, covariance matrix in descending

eigenvalue order and A does a rotation in the vector space of X to the new vector Y.

If the columns of A are orthonormal and form n linearly independent basis vectors, then the
following conditions

ATA=Tand A ' = AT 2.12)

2-12




Input Nodes (data vector X)

Figure 2.5. Network Architecture for Karhunen-Loéve Feature Extractor. (37)

allow the vector Y to be written as

Y=ATX (2.13)

where the dimensionality of Y is equal to the dimensionality of X, and Y is the vector of Karhunen-
Loeve coefficients found from the rotation of X to Y. If the goal is to reduce the dimensionality of Y,
and if for all X presented to the network, some of the nodes of Y were very small, zero, or constant,
then they would not be necessary to reproduce an estimate of X :

Ji’(m)=iy.--4.-+ Zn: biA; .19

i=1 i=m+1

where b; coefficients are independent of X and y; coefficients are dependent on X (37). Now, if the

objective is to classify and not reproduce X, then since the value b;,s = m + 1...n, is constant or

2-13




nearly zero, it can be ignored. The number of eigenvectors chosen from A is then m and the network
has effectively reduced the dimension of the data set. Likewise, since we are using PCA to reduce the
dimension we have extracted the primary features which can now be used for classification of the data.
The classification is performed by the top portion to the network, see Figure 2.5. It should also be
noted that in order to make the network training easier the data must be statistically normalized before
presentation to the feature reduction portion of the network and then statistically normalized once more

before presentation to the classification portion of the network (37).

2.4 Neural Networks for Face Recognition

2.4.1 Cottrell Neural Network. A neural network for face recognition is being developed by
Garrison Cotirell at the University of California at San Diego (11, 5). His network, shown in Figure
2.6, is trained using back propagation and is composed of his image compression (auto-association)

network and a single layer perceptron. The parameters for the networks in Figure 2.6 are as follows:

e Auto-associator Network

- Input nodes: 4096

~ Hidden nodes: 40, sigmoid activation range [-1,1]
= Output nodes: 4096, sigmoid activation range [-1,1]
- Momentum: 0

- Hidden layer learning: 0.0001

- Output layer learning: 0.1

o Classification Network

2-14




- Input nodes: 4096

- Hidden nodes: 40, sigmoid activation range [-1,1]
= Qutput nodes: 20, sigmoid activation range [-1,1]
- Momentum: 0

- Hidden layer learning: Fixed weights

- Output layer learning: 0.1

The basic operation of the network is as follows. First, the auto-associator network is trained to
match output images to input images. The images for this experiment were 64x64 pixels, brightness
normalized, and manually centered. There were eight images for each of 20 students, 10 male and 10
female, making a total of 160 images. The auto-associator network used for this phase consists of 4096
(64x64) input nodes, 40 hidden nodes, and 4096 output nodes. Successful training is defined as the root
mean square pixel intensity error rate being less than 12 gray levels between input and output which
corresponds to an average squared error per unit of .0017. The error rate is met in approximately 50
epochs which indicates that the network is trainable in a short amount of time. Dr. Cottrell theorizes that
the hidden layer compresses the data and extracts features that represent a distributed representation of
the principal components which are similar to the eigenfaces of the MIT face recognition system. He
supports this theory by forming the covariance matrix of the hidden unit activations over all images and
extracting the principal components using strict principal component analysis. The resulting principal
components are then decompressed by running them through the output layer of the auto-association
network. Figure 2.7 shows images reconstructed in this manner, and they are similar, at least in

appearance, to the MIT eigenfaces.

2-15




Auto-association Network Classification Network

4096 Output nodes 20 Output nodes

R

N
m' e
YA N\ TEETT TN

4096 Input nodes 4096 Input nodes

Figure 2.6. Left is the auto-association network used to train the input layer weights for the network
on the right. The output layer weights on the classification network are trained using

backprop. (5)

After the auto-associator network is trained, the weights between the input and hidden layer
are fixed and the output of the hidden layer is connected to a smaller (20 output nodes), single-layer
classification network. This smaller network is then trained to classify (identify) each image; the
network is also trained to identify, and classify as ‘unknown’, nonface images at this time. The test
results for this network were 99 percent recognition accuracy. However, the data base used was
constrained to 20 subjects and all images were captured on the same day and time. The capabilities
of this network have not been tested over multiple days of images or for larger data bases and it is

believed that these tests will cause problems for the network.

2.4.2 Backpropagation Neural Network for Face Verification. Researchers at the Los

Alamos National Laboratory have developed a face verification system that uses a 3-layer neural

2-16




rigure 2.7. Holons derived by PCA from hidden unit responses. (5)

network trained by back propagation (25). The network parameters, which were arrived at empirically,

are shown below:

e Input nodes: 1400

e Hidden nodes: 20, sigmoid activation range [0,1]
e Output nodes: 1, sigmoid activation range [0,1]
e Momentum: 0.50

o Hidden layer learning: 0.15

e Output layer learning: 0.30

The network is fully connected and all weights are initially set to random values uniformly
distributed between —0.1 and 0.1. The input vectors are scaled to the range [-1,1] and the network
was trained to output a 1.0 for the target and a 0.0 for outputs other than the target. The training was
stopped after 15,000 iterations. In all cases the number of target pictures in the data base was artificially

forced to be 10 percent of the total by replicating the target images.

2-17




The data base used contains 11,416 images of 760 different people with the number of images
per person ranging from 5 to 20. All images were aquired using a video camera with VideoPix installed
on a Sun Microsystems SparcStation IPC computer. As can be seen in Figure 2.8, the distance from

the camera, background, and lighting conditions were kept as constant as possible.

OA oft 3 3f
45’
Camera Subject

Background
Lights

Figure 2.8. Setup used for capturing images at Los Alamos National Laboratory. Images are then
used in a Backpropagation Network. (25)

The network was tested using various compositions of training data. The training sets consisted
of 5, 10, 15, or 20 percent of the data base either randomly selected or from specific demographic
groups. The results of the verification tests were averaged over all training scenarios and the numbers
show a 99.997 percent correct rejections of non-targets and a 91.3 percent correct acceptances of
targets. As in the Cottrell tests, the data used for this network testing was captured during a single
sitting on one day. To be useful, a verification network must perform well on muitiple days of data
and this network is not expected to perform well on multiple days. Additionally, this network has not
been tested for classes of data larger than one so the upper limits of the network are unknown. These

concerns will be addressed in this research.

2-18




2.4.3 Additional Network Research An image recognition system which uses an infrared
illumination system to overcome ambient illumination is currently being developed in England (10).
The system is based on a neural network known as WISARD and is reported to be capable of face
recognition against background scenes. The drawback of this system is the complexity: it requires two
cameras, control hardware, an IR Illumination System, Training Software, and WISARD hardware.
Likewise, it requires a significant amount of memory because two 800x540 images are taken for every

scene.

In addition to WISARD based system, a neural network for face recognition based on a multilayer
perceptron and shared weights has been introduced in France (4). It is believed that this sytem
will handle changes in lighting and rotations and face translations by adding additional prototypes.
Preliminary test results have yielded acceptable results but the database consisted of only 10 subjects.
This system will also require large amounts of memory because the images used were 256x256 pixels,

with 70 prototypes captured per person. This equates to approximately 640 Megabytes of data.

2.5 Summary

This chapter presented several neural network approaches to feature extraction, data compres-
sion, and classification. Specifically, in relation to face recognition, an identity network, a Cottrell
classification network and a backpropagation network were discussed. Each was reported to perform
well for face recognition, however, the data bases used were limited in size and/or in the number of
classes. These limitations will be addressed in this research by increasing the size of the data bases
and increasing the number of classes in the data bases. Additionally, the capabilities of these networks

for data captured over multiple days has not been investigated. Therefore, this research will also focus

2-19



on capturing data over multiple days to determine how this type of data effects the networks described

previously. Chapter 3 presents the methodology used to address these issues.

2-20



1ll. Methodology

3.1 Genersal

The objective of this thesis was to investigate various neural networks for face recognition
to determine their capabilities as feature extractors and classifiers. Since one of the criteria was
to implement the algorithms on Sun workstations, the first task was to port an existing multilayer
perceptron algorithm onto a Sun workstation and test its operation. Next, the algorithm was enhanced

to work in the following modes (refer to Appendix A for code):

o As a multilayer perceptron (MLP) with sigmoidal or symetrical sigmoidal activations
® As an identity network for image compression and feature extraction
o As a Cottrell classification network

o As a 4-layer feature extraction and classification network

After the MLP algorithm was ported and tested, the second task was to develop and test the
identity network. Next, the problem of individual verification was examined. For this task, the
algorithms were used to verify individuals in a two-class problem where class 1 signified a positive
verification and class 2 an unknown or negative verification. Next, the individual verification problem
was expanded to include multiple days. The multiple day problem is an important extension because it
has not been investigated in the literature to date. After verification tests were complete, the algorithms
were used in a large scale recognition problem. This differed from the verification task in that the
network was now a multiclass problem with many individuals to recognize in the database and this

is a much more difficult problem than verification. The databases used in both the verification and

31




multiple class tests were compared using a standard multilayer perceptron and the neural network
feature extractor/classifier. Additionally, the performance of a network using standard Karhunen-
Loeve Transform (KLT) coefficients as input features was compared to the neural network extracted

features. The final task was to describe the algorithms developed to implement the above objectives.

3.2 Algorithm Development

The first phase was to port an existing MLP algorithm with back propagation learning to a Sun
workstation. The MLP algorithm used for this phase allowed a maximum of three layers of nodes
(input, hidden, and output) and used sigmoidal activations in the hidden layer and output layer. The
sigmoids in this case had limits of [0,1]. The algorithm was then modified to function as both a Cottrell
and an Oja identity network. For this, symmetrical sigmoid activation functions, limits of {-1,1], were
added to the algorithm and were interchangeable with the current sigmoid activation functions. The
difference between the Cottrell identity network and the Oja network is that the Oja network uses linear
activations on the output layer. Additionally, the capability to display the network input image and the
output image was added to allow for visual verification of the performance of the identity networks.
The next enhancement to the algorithm was to allow it to perform as a Cottrell face classification
network. This meant that the network algorithm had to initialize and learn the output layer weights but
the input layer weights were those previously learned from an identity network algorithm. The final
enhancement to the algorithm was to create a 4-layer network for feature extraction and classification.
This was done by adding another layer to the Cottrell classification network. It is believed that this
additional layer will allow for increased accuracy in the classification of data since it essentially adds a
hidden layer to the classification portion of the network. It is simply a backpropagation network whose

inputs are the outputs of the hidden layer of an identity network, see Figure 3.1.

3-2




Input Nodes (Image vector pixel values)

Figure 3.1. 4-Layer network for feature extraction and classification. The input layer consists of
the input layer of a previously trained identity network and the upper layers consist of a
multilayer perceptron with backpropagation learning.

3.3 Feature Extraction and Classification Using Identity Networks

The goal for this task was to determine whether or not an identity network, shown in Figure 3.2,
could extract features that were meaningful as inputs to a classification network. The idea was to allow

the identity network to learn a compressed representation of the data and reconstruct it.

The data for this task and subsequent tasks consisted of 32x32 (1024) pixel, 8 bit gray scale images
of faces that had been captured on the Sun workstations using VideoPix. Each individual had between
10 and 20 images captured on any given day with a total of 800 images of 49 different individuals. All

images were windowed with a gaussian window routine to deemphasize the background.




The network required for feature extraction consisted of 1024 input nodes and 1024 output
nodes. The number of hidden nodes used determined the amount of compression, or the number of
features extracted, and this number was varied from 10, to 20, to 40. 40 was used as an upper limit
due to training time required. The network was trained until the averaged mean squared error per pixel
(MSE/P) between the original image and the reco._.structed image was less than .0034 which corresponds
to 25 gray scale levels per pixel or 10 percent reconstruction error per pixel. The reconstruction in
this manner is recognizeable to a human as will be shown in chapter 4. MSE/P was found using the

following definition
Egl Eﬁ—.l(INl'J' - OUT.-_,-)’

MSE/P = D)

3.1

where N is the image size in pixels, M is the number of images, and I N and OUT are, respectively,

the input and output node values.

Identity Net

I

Input Image Output Image
Y
Hidden node outputs

are extracted features

Figure 3.2. Image compression/feature extraction and reconstruction procedure: The outputs of the
hidden nodes are the features used as inputs to a classification network. (11, 5).

34




In addition to varying the number of hidden nodes, the size of the database in terms of the number
of classes was also varied to determine what effects, if any, this had on the networks. The databases

used for these tests were varied from 10 classes, to 30 classes, to 49 classes.

3.4 Verification and Classification Using Backpropagation

This task is divided into two phases: single day verification and multiple day verification. The
two differ in the data sets used for training and testing the network. Single day data are images that
were captured on one day only within a 90 second window for each individual. Multiple day data are

images that were captured over several days for each individual.

3.4.1 Single Day For this task several databases were generated that had the target individual
to verify as class 1 and images of other subjects as class 2. Multiple runs were made of each database
and the average accuracy (correct verification) was recorded. The minimum number of images used
in any database was 100 to keep in line with the testing performed in (25). The mix of individuals in
each data set was 20/80, which means that 20 percent of the images in the data set were of the target
individual (class 1) and 80 percent were of nontargets (class 2). Nontargets consisted of 2 images each

of other individuals in the data base.

The total number of images in each database was 50: 10 for the target (class 1) and 40 (2 images
each of 20 other individuals) for the non-target (class 2). Each database was trained and tested using

the following:

o A standard multilayer perceptron with nonlinear activations on the output layer and hidden layer,

o A Cottrell (single layer) classification network with Cottrell identity network extracted features

as inputs,




o The 4-layer network which uses identity network extracted features as inputs to a classification

network with a hidden layer.

This totaled 6 tests for each database. There were also additional tests to determine the numbers of

hidden nodes and iterations which provided for the best performance.

3.4.2 Multiple Day Verification This task is one of the most significant contributions of this
thesis because it has not received attention in the face recognition literature. It is the verification of
individuals using databases that are generated over time. Most research consists of images that have
been captured in a relative short period of time, one or two minutes, and under very strict conditions.
This task was developed to test the system over less constrained input images because, in reality, we
change from day to day. The questions are then, how does data from multiple days effect the accuracy

and what are the limitations of this system? The approach was as follows:

1. Use the databases from the individual verification task to train the various networks.
2. Test each network using data captured from a new day.
3. After testing, add the new days data to the training database and retrain the network.

4. Go to step 2, and continue this process for the desired number of days.

3.4.3 Multiple Person Recognition For this experiment, the size of the database was in-
creased as well as the number of classes. This is a more difficult problem than individual verification
because we are now attempting to classify (recognize) many faces as opposed to just one face. The
database for this task consisted of 800 images of 49 different individuals. Tests were accomplished

on multiple class problems using 10 classes (10 different people), 30 classes, and 49 classes. As in

3-6




earlier tests, each individual had 10 or 20 images captured and the data was randomly separated in each
case to be 60 percent training data and 40 percent test data. The point of this part of the study was to

determine what effects larger databases have on the networks being tested.

Several questions to be answered are listed below.

o What is the trade-off between the size of the database and classification accuracy?
e How many hidden nodes are required for a given number of classes?

e Do larger databases make training time prohibitive?

3.5 Neural Network Classification versus Karhunen-Loeve Transform

For this part of the study the classification accuracy using the identity network extracted fea-
tures was compared to classification accuracy using standard Karhunen-Lodve Transform features
(coefficients). The results for multiple person recognition using the Karhunen-Lo2ve Transform are
documented in a previous thesis by Pedro Suarez (36) and in a collateral thesis by Kenneth Runyon
(30). Suarez showed that the Karhunen-Lo@ve Transform, using single day data, obtained an accuracy
of 95 percent on 55 faces (classes of data). Runyon used the Karhunen-Loéve Transform on data
gathered using a motion based segmentation system developed in a thesis by Kevin Gay (13). Runyon
had data sets for single day, multiple classes and two day, multiple classes. Using the motion segmented
data and the Karhunen-Lo2ve Transform Runyon achieved accuracies of 77 percent for single day and
32 percent for two day data using 23 faces (classes of data). The testing in this section will be for
a comparison of the Suarez and Runyon systems to the neural network system. As such, data for a

multiple class, single day training and multiple class, two day training will be used for comparisons.

37




Additionally, the data sets used for single and two day testing in the neural networks will be tested in

the Runyon system.

3.6 Code Development

All code for this thesis was written in ANSI standard C. Some routines were developed specif-
ically for this thesis, some were borrowed from others and some were taken from Numerical Recipes

In C (26). Code developed for this thesis is included in Appendix B.

3.7 Summary

This chapter presented the methodology for investigating various neural networks used for
feature extraction and classification of face image data. Specifically, an identity network was developed
and tested as a nonlinear neural network feature extractor. Likewise, a single layer (Cottrell) and a
multilayer backpropagation network were developed for use as classification networks with identity
network extracted features as inputs. Additionally, a backpropagation network for verification and
recognition, using data gathered over multiple days, was developed and tested. In all cases, data bases
used for testing and training were varied by the number of exemplars used, by the number of classes,

and by the days on which the data was gathered. Test results for these networks are found in Chapter 4.

3-8




IV. Results

4.] General

This chapter presents the test results for the tasks outlined in Chapter 3. Images used were 32x32,
8 bit gray scale that were captured using a Sun workstation tool called VideoPix. More information on
VideoPix can be found in a collateral thesis (13). Images were preprocessed to add a gaussian window

around the faces in order to de-emphasize the background.

4.2 Feature Extraction and Classification Using Identity Networks

4.2.1 Feature Extraction The image compression capabilities of the identity network was
tested first because the outputs of the hidden layers in such a network will be the extracted features for
use in a classification network. The network used, shown in Figure 2.4, had the following parameters
which were based on the work of Cottrell (5) and Oja (23):

o Input nodes: 1024
o Hidden nodes: 10, 20, or 40, sigmoid activation range [-1,1]
o Output nodes: 1024, sigmoid activation range [-1,1]
e Momentum: 0.
o Hidden layer learning: 0.0001
e OQutput layer learning: 0.1
Training the network using these parameters, especially as the number of classes increased,

caused the output error to begin bouncing slightly, see Figure 4.1, indicating that the learning rate used

could be too large.

4-1




ID Net Learning: Eta = 0.1 ID Net Learning: Eta = 0.1
100 I T Y T Y T T 10 ™ v v v T T Y
i t I H | 3 | | } H ! :
! . ; ! ! ! ! i ; i ; : :
80 4 i : e [t BRSSE B L e e B i e St
| ' i i ' i ! i i i i ;
N P P R
60 | + e S R R 6 . = o i
a P I @ i P
= . L 2 i Lo
40 T T ‘U IR
i ! ; i T ; ; ;
20 - 4 + ; ; 2 } e Bt e o
' ! : i i ;
| P | P
0 1 ; 1 T 0 i H i H
0 2000 4000 6000 8000 100001200014000 0 2000 4000 6000 8000 100001200014000
Plot A Iterations Plot B Iterations
Figure 4.1. Non-smooth identity network learning. Plot B represents a more detailed look at Plot A.

Non-smooth learning, refer to Plot B, can be seen after 4000 iterations, indicating that
the learning rate is too large. In this case eta = 0.1

The solution was to retrain the network using a smaller output layer learning rate; 0.01 instead of
the 0.1 of the original training. This solved the non-smooth behavior, see Figure 4.2, but the final MSE
was now generally above the target range of 3.5 after the desired number of iterations. This problem
was solved using the following variable learning rate: 0.25 for epoch number 1, 0.1 for epochs 2-25,
and 0.01 for epochs 26 and higher. The increments of 25 epochs were chosen through trial and error.
This variable learning provided for a smoother MSE curve, see Figure 4.3, and limited the training

time of each network, run on Sun SPARCstation 2’s, to 8 hours or less.

With the parameters now defined, the identity network performed as desired and the output of
the network at various stages of learning is shown in Figure 4.4. As evidenced in the figure, the
network can learn to compress and reconstruct, to an acceptable level, the images in a data set. Results

of testing the network using various class sizes and hidden nodes is shown in Table 4.1.

The table lists the final average MSE for all images in the training set after 15, 000 iterations.

The results show that the target MSE of 3.5 or less was achieved for 10 and 30 classes but was slightly

4-2




ID Net Learning: Eta = 0.01

100 Y Y Y
! ! !
80 \ ! i
N
€0 :

N

ENEE.
\\

0
0 2000 4000 6000 8000 100001200014000
Iterations

MSE

Figure 4.2. Slow identity network learning indicating that the learning rate is too small. In this case
eta =0.01

Table4.1. Average MSE of an Identity Network after 15000 iterations for varying class sizes and
numbers of hidden layer nodes. For the Identity Network, inputs = outputs = 1024.

| || 10 nodes | 20 nodes | 40 nodes |

10 classes || 2.7 1.6 09
30 classes || 3.3 23 2.1
49 classes || 5.3 4.0 73

higher for 49 classes. The 15, 000 iteration limit was placed on the networks to limit the training time
and it is believed that the final error for 49 classes could be lowered given a much longer training time:

this was tested with a single run where a final MSE of 3.8 was reached after 50, 000 iterations.

Finally, it should be noted that the input layer weights learned by each identity network were
saved for use as the input layers of the classification networks because the output activations of this

layer would be the features used in the classification networks.

4.2.2 Classification Using Identity Network Extracted Features With the identity networks

trained, the next phase was to test how well features extracted from the identity networks worked in

43




ID Net Learning: Eta = variable ID Net Learning: Eta = variable

100 - ‘ ! _ v T T 10 T v T T T M
A ' ’ :
80 S S S A R 8 R S S S A
A A
60 e S S S — 6
w ! H ¢ ; > i [
g | _ s S
L e e e A 4
i ; ] !

'
A . .

20 [ e 2 . e e e
i H . i i i
.
Il

+ t + + + —+ o H i i H \ N R
2000 4000 6000 8000 100001200014000 2000 4000 6000 8000 100001200014000

0
0 0
P'ot A Iterations Plot B Iterations

Figure 4.3. Identity network learning obtained with variable learning rate. The net learns quickly at
first and more slowly and smoothly as the iterations increase. Plot B represents a more
detailed look at Plot A.

a classification network. Recall that the extracted features used here are the output activations of the
hidden layer nodes of an identity network, refer to Figure 3.2. For this test, the network used is that
shown in Figure 3.1 where the input layer is the fixed weights from the previously trained identity

networks and the output layers are a backpropagation network with the following parameters.

Input nodes: 1024

Hidden layer 1 nodes: Fixed by Identity net training at 10, 20, or 40

Hidden layer 2 nodes: Varied from 0, for a Cottrell classifier, to 50

Output nodes: Multiple classes of 10, 30, or 49

Momentum: 0.50

e Output layer learning: 0.30

Hidden layer learning: 0.15




=3

™

Out3K | Out6K | Out9K | Out 12K | Out 15K

Figure 4.4. Identity network input images versus reconstructed output images at selected iterations
of 0, 3000, 6000, 9000, 12000, and 15000.

e Activation Function: Symmetrical sigmoid, range [-1,1], at hidden layer 1 and sigmoid with

range [0,1] at hidden layer 2 and the output.

The results of the various classification network configurations are summarized in Tables 4.2
and 4.3, which show that the features extracted from the identity networks are acceptable features to

classify the data.

The results show that the feature extraction and classification networks used by Cottrell (a 100/1
compression or 10 hidden nodes in identity network and no hidden layers in the classification network)
had a significant decrease in classification accuracy as the number of classes was increased. However,
the accuracy was improved by decreasing the Cottrell recommended compression of 100/1 to 25/1 (40
hidden nodes in the identity nets). Additionally, adding a hidden layer of nodes to the classifier also

improved the classification accuracy of the test set, refer to Table 4.3. As the table shows, varying

4-5




Table 4.2. Classification Accuracy Using Identity Network Extracted Features as inputs to a Cottrell
(no hidden layer) backpropagation network. As the class size increases the Cottrell network
using 10 input features performs poorly. The accuracy was greatly improved when the
Cottrell network was modified to have 20 and 40 input features.

Cottrell Classifier Test Set Accuracies
| Input Features | Output Classes " Test set accuracy
(10 10

10 30 85.0%
10 .

20 10 95.0%
20 30 97.0%
20 49 91.8%
40 10 85.0%
40 30 96.7%
40 49 97.9%

the number of hidden nodes (between 10 and 50) in the classification portion of the network had a
slight impact on the test set accuracy; too few or too many nodes in the hidden layer caused the test
set accuracy to decrease. The trade off then is between the accuracy desired and the training time
involved for larger networks. As stated earlier, the identity nets with 40 hidden nodes required 8 hours
of training time on Sun workstations; this must be added to the time to train the classification portion
of each network, and this time grows as the number of hidden nodes is increased. However, given the
trade offs, the bottom line here is that the features extracted using the identity networks can be used to

classify the data with acceptable accuracy.

When comparing these results to those obtained by Cottrell (11, §), a 100/1 compression ratio
(10 hidden nodes) did not yield the 99 percent accuracies he reported. In fact, as the number of classes
was increased to 49, which is over twice the 20 classes Cottrell used, the accuracy drops to a low of only

66 percent. However, by increasing the number of hidden nodes to 40, which increases the number




Table 4.3. Classification Accuracy for test data using Identity Network Extracted Features as inputs
to a single hidden layer backpropagation network. This type of network is an improvement
over the Cottrell classification network. Accuracies are listed with respect to the number
of nodes in the hidden layer. All training sets obtained a 100% training accuracy during

training.
Input Features | Output Classes ]| 10 nodes | 20 nodes | 30 nodes | 40 nodes | 50 nodes |
10 10 90.0% |900% [97.5% |925% | 90.0%
10 30 808% |850% [89.1% |850% |[850%
10 49 H 643% |714% |73.0% |73.0% |750%
20 10 950% |950% [950% [97.5% |950%
20 30 883% |916% |933% |94.1% | 89.1%
20 49 770% |84.1% |89.7% | 882% | 86.2%
40 10 850% |950% |850% |850% |80.0%
40 30 925% |941% [967% |933% |91.7%
40 49 800% |91.8% |[91.8% |[913% |928%

of features (inputs) used in the classification network, the classification accuracy increased over 30
percent. Therefore, modifying the Cottrell identity network to a 25/1 compression ratio allows the
network to perform well for class sizes as larger as 49. It is also important to note that for this research
the input images were 32x32 pixels and Cottrell used images of 128x128 pixels; in other words, the
modified identity network (ie. 25/1 compression) performs well and allows a 75 percent reduction in

the amount of input data required.

4.2.3 Ildentity Networks and Multiple Day Data Classification For this test, data gathered
on a second day was used to test the identity networks generalization capabilities for feature extraction.
Specifically, the data from day 2 was input to the previously trained identity networks (trained using day
1 data) and the features for that data (activations of the hidden nodes) were saved. The features were
then tested using the weights of the previously trained classification networks of Table 4.3. Results of

this testing are shown in Table 4.4. These results show that the identity networks do not generalize

417




well over multiple days of data. Likewise, adding additional days worth of data to the data sets did

not improve the classification accuracy. This is because multiple days of data create problems for the

identity networks; the identity network can minimize the MSE of the training set but when multiple

days of data are used, the error on the test set remains a magnitude higher which means that the test set

error, in terms of reconstruction, is plus or minus 100 percent. As such, the features extracted by the

identity network for the test set are not adequate for proper classification.

Table 4.4. Classification Accuracy using Identity Network Extracted Features of multiple day data as
inputs to a 2 weight layer backpropagation network for varying numbers of hidden layer
nodes and a single weight layer Cottrell classification network. NOTE: 0 nodes represents
the Cottrell network results.

Output Classes | Input Features || 10 nodes | 20 nodes | 30 nodes | 40 nodes | 50 nodes [| O nodes |
10 10 5.0% 5.0% 12.0% 10.0% 3.0% || 10.0%
10 20 { 50% 8.0% 8.0% 10.0% 50% || 10.0%
10 40 | 10.0% 19.0% 19.0% 20.0% 14.0% || 10.0%
30 10 I 50% 5.0% 3.0% 1.0% 3.3% 3.3%
30 20 5.0% 6.7% 2.3% 4.3% 4.7% 3.3%
30 40 J 6.0% 4.7% 5.3% 5.3% 3.3% 3.3%

4.3 Verification and Classification Using Backpropagation

4.3.1 Single Day Verification The images used for this test had been captured during a single

sitting of each subject over about 90 seconds. The training and test data sets were generated such that

the target subject (for verification) was class 1 and all other faces in the data sets were class 2. The

network used for this test had the following parameters:

o Input nodes: 1024

o Hidden layer nodes: 10, or 20

4-8




o Output nodes: 2

e Momentum: 0.50

e Hidden layer learning: 0.15
e OQutput layer learning: 0.30

e Activation Functions: Sigmoidal (range [0,1]) at hidden and output layers.

The goal was to affirm that that the network could comrectly verify a target individual. Test
results, representing 10 runs each for 3 targets, are shown in Table 4.5. The results show that the
network performed as expected and can verify individual targets using a standard backpropagation
network.

Table 4.5. Classification Accuracies for Single day verification of 3 target subjects

{ Data (day) || Hidden layer nodes | 30 run average |
day 1vsdayl ]| 10 96.4% ’
day 1 vsday1 || 20 96.9%

These results support the verification work being performed in Los Alamos National Laboratory
(25) which uses raw image data as inputs to a backpropagation network with a single hidden layer. The
Los Alamos Laboratory research uses a minimum of 100 images to train the network, with 10 percent
of the images representing the target to verify and 90 percent representing nontargets. Additionally,
their data was captured on a single day for each individual. Data captured in this manner yields good
results (Los Alamos had results as high as 99 percent for some individuals) but it does not allow for
daily changes in individuals and, therefore, does not represent the real world where images will have to
be captured on many days if the system is to be useable for verification. The multiple day day problem

is addressed in the next section.

49




4.3.2 Multiple Day Verification The accuracy for verification using data captured on a single
day is very good. However, it is believed that training on a single days data will not allow for verification
in a real environment where images will be gathered daily. This sections testing was designed to find
the problems of a multiple day system and propose and test solutions. The network used for testing
in this section is the same as that for single day verification, ie. single hidden layer backpropagation
network, but the difference is in the data sets used for training and testing. Data used in this section
was gathered over several days with multiple sittings of each target. The results of the testing are found

in Table 4.6.

Table 4.6. Classification Accuracies for Multiple day verification of 3 target subjects using raw image
data as inputs to a single hidden layer backpropagation network. All training sets obtained
a 100% classification accuracy during training.

| Data (day) || Hidden layer nodes | 30 run average |
day 1 vs day 1 10 97.0%
day 1 vs day 1 20 96.6%
day 1 vs day 1 40 95.3%
day 1 vs day 2 10 11.7%
day 1 vsday 2 || 20 15.0%
day 1 vsday 2 || 40 20.5%
day 1-2 vs 1-2 10 91.1%
day 1-2 vs 1-2 H 20 90.8%
day 1-2 vs 1-2 || 40 89.0%
day 1-2vs3 || 10 9.0%
day 1-2vs3 20 15.0%
day 1-2vs 3 40 2.0%
day 1-3 vs 1-3 10 90.6%
day 1-3vs 1-3 || 20 90.7%
day 1-3 vs 1-3 40 90.3%
day 1-3vs 4 10 14.0%
day1-3vs4 20 33.0%
day 1-3vs 4 40 44.0%

4-10




Column one indicates which day(s) the training versus test sets were captured on. Column
three shows the classification accuracies for the various data sets and hidden node configurations. As
expected, the network performed poorly in the multiple day test, but it was proposed that increasing
the number of days in the training set (ie. more prototypes) would show an improvement. However, as
can be seen in the table, adding prototypes from several days provided no improvement over the single
day training. Therefore, a test was developed to determine why the network was not improving even

with the introduction of multiple days images into the training set.

For this test a training data set was created that conwained target images from a single day only
and the network was trained. Then a test set was created by shifting these images 1 pixel at a time and
testing the net to determine how a shift in the image would effect the verification accuracy. Likewise,
the images were scaled to determine if scale was a problem. An original image with a shifted and
scaled version are shown in Figure 4.5 and the results of the testing are provided in Table 4.7. The
results of these test indicate that shifts of 1 pixel can be overcome by some network configurations
since the accuracy for a 1 pixel shift varied from O to 100%. However, if the shift is 2 pixels, or about
a 6.6% shift, then the network performs poorly. Likewise, a scale change of even 5 percent will cause

severe problems for the network.

Table 4.7. Classification accuracies of original (day 1) images versus scaled and shifted versions of
the same images. Original images were trained to 100% accuracy of the training set;
original image test set accuracies are shown in the table.

Test Set Classification Accuracy: 10 run average, 10 test images per run
_Original Images || Shifted 1 pixel | Shifted 2 pixels [[Scaled 5% |
[99.0% ~40.0% 000%  [030% ]

4-11




Original Scaled Shifted
Image Image Image

Figure 4.5. Original image and a scaled and shifted version of the same for testing the effects of scale
and shift on the multiple day verification networks

The question was then how do you compensate for the scale and shift problems? More prototypes
still seemed to be a piece of the solution but that alone was shown previously to offer little improvement.
The proposed solution was to increase the number of days of training data plus increase the mixture of
target versus nontarget images in the training set. This means that instead of using a data set with 20
percent of the images from the target and 80 percent nontarget, a new data set containing a 50/50 mix
would be created and tested. It was believed that this would allow the weights to update more evenly

for target and non target alike.

The networks were retrained and the results for 2 target subjects are shown in Table 4.8. As
can be seen in the table, training the network using data gathered over 9 days dramatically increased
the classification accuracy for multiple day test sets; in this case, the test sets consisted of data
gathered on days 10 and 11. Therefore, training on days 1 through 9 allowed the networks to correctly
verify target data from days 10 and 11 with a high degree of accuracy. Given the above resulits, the

solution for verification over multiple days, which had not been addressed in previous literature, is a

4-12




Table 4.8. Classification Accuracies for Multiple day verification using data sets with 50% target
images and 50% nontargetimages. All training sets attained a 100% classification accuracy

during training.

[ Data (day) [| Hidden layer nodes | 30 run average
day 1-4vs1-4 ] 10 88.8%
day 14 vs 14 20 89.5%
day 14 vs 14 || 40 88.3%
day 14vs 5 10 30.5%
day 1-4vs 5 20 11.0%
day 14 vs S 40 25.0%
day 1-9vs1-9 | 10 91.4%
day1-9vs1-9 | 20 91.5%
day 1-9vs 1-9 40 89.7%
day 1-9 vs 10 10 99.4%
day 1-9vs 10 20 100.0%
day 1-9 vs 10 40 94.0%
day 1-9 vs 10-11 || 10 94.7%
day 1-9 vs 10-11 || 20 88.2%
day 1-9 vs 10-11 || 40 86.5%

backpropagation network with a single hidden layer and a training set with an equal number of target

and nontarget data images collected over multiple days.

4.3.2.1 False Acceptance Testing This task was designed to test the false acceptance
rate for nontargets. In other words, what percentage of the time will the network identify a nontarget
as a target. The data for this test consisted of 90 images of nontargets, gathered over several days,
and they were tested against the networks trained for day 1-9 data. Results of this testing are shown
in Table 4.9. The table shows that for any number of hidden nodes used the false acceptance was no
greater than 9.2 percent. As stated in the previous section, these results, and the verification results of
Table 4.8, indicate that a backpropagation network with a single hidden layer can be used successfully

for verification over multiple days.

4-13




Table 4.9. False acceptance testing of multiple day images of nontargets. Data was tested against
networks previously trained for multiple day verification. The False Acceptance Rate
indicates how often a nontarget was identified as a target, based on a 20 run average.

| Data (day) Hidden layer nodes | False Acceptance Rate
day 1-9 vs nontargets . )
day 1-9 vs nontargets || 20 9.6%
day 1-9 vs nontargets || 40 8.2%

4.3.3 Multiple Person Recognition This portion of the testing used the backpropagation
network once more to assess the ability of the network to classify multiple classes of face images. The
parameters for the network remained as above. An immediate disadvantage of using the larger class
networks was the training time. As a minimum, a 10 class problem with 40 hidden nodes required eight
hours on the Sun SPARCstations to train and as the number of classes increased so did the training time
to a maximum! time for these tests of 15 days for a 49 class problem with 250 hidden nodes. Results

of the testing for this section are shown in Table 4.10.

For single day, multiple class problems the network could learn the training set and perform
reasonable well on the test set accuracy, but when a second days data was added to the training and
test set the accuracy was again a problem. No further testing of multiple day, multiple class could be
performed to determine if additional prototypes would be useful because data for more than 2 days

only existed for 3 individuals, all other subjects were 2 days of data only.

Training to 200K iterations, which took 13 days and the training data only learned to 55.5%. Estimates of the time
required to complete the training on Sun SPARCstations are 30 days.

4-14




Table 4.10. Classification Accuracies for Multiple Classes using raw image data (1024, 8-bit gray
scale values) as inputs to a single hidden layer backpropagation network. All training
sets attained 100% classification accuracy during training.

| Classes || Hidden layer nodes | Iterations | Test Set Accuracy

10 10 10K 86.7%
10| 20 10K 91.6%
10 30 10K 83.3%
31 31 30K 92.5%
31 62 50K 92.9%
31| 93 50K 81.7%
49 50 100K 91.9%
49 100 | 100K 87.1%
9 | 150 | 200K 74.6%
9 | 250 | 200K 46.4%

4.4 Classification using raw data, Karhunen-Lotve transform features, and identity network

extracted features

For this task, multiple classes of data gathered over two days was tested in the neural networks
described previously and in the AFIT end-to-end system (developed by Runyon) which uses the
Karhunen-Lo2ve Transform (KLT) as developed by Suarez (36). The purpose of this task was to
compare the classification accuracy of a neural network using three different input features: raw image
data, KLT extracted features, and identity network extracted features. The number of input features
and hidden nodes used were determined from previous tests—these parameters gave the best resuits.

The data sets for these tasks are as follows:
e Motion Segmented Data (MSD). This consisted of 230 images of 23 subjects (classes) captured
over two days with the motion segmentation system described in (13).

o Hand Segmented Data (HSD). This data is composed of 600 images of 30 subjects captured over

two days, one sitting per day, with the system described in chapter 3.

4-15




| 4 o - o o o ST TR T s T . - e o Ty 7 T T - - - 7=

The identity network features were extracted from the motion segmented data and the hand
segmented data and the reconstruction of images using these features is presented in Figure 4.6 for the
motion segmentation and Figure 4.4 for the hand segmentation. Based on the visible reconstruction
error, again refer to Figure 4.6, which was hypothesized to be important to some degree in face
recognition, the features extracted from the motion segmented data should not do as well as the hand

segmented data.

Reconstruction of Motion Segmented Data

In 5K In10K | In15K | In20K

Out 5K | Out 10K | Out 15K | Out 20K

Figure 4.6. Identity network input images versus reconstructed output images using Motion seg-
mented data. The images are shown at selected iterations of 0, 5000, 10000, 15000, and
20000. Although the identity network reduced the average MSE, the reconstruction of
this data is not recognizable to a human observer.

The test results are shown in Table 4.11. Classification accuracy for hand segmented, single day,
multiple classes is essentially equivalent for all types of inputs. However, using strict Karhunen-Lo2ve
transform features as inputs to a classification network yielded higher classification accuracies, by a

few percentage points, than did the identity network extracted feaures as inputs to the classifier. This




could be expected since the identity networks develop a distributed representation of the principal
components and not necessarily the most significant principal components (11, 5) as does the strict
KL transform. When using the motion segmented data, the Karhunen-Lodve transform features were
clearly better to use as inputs to a classification network. When combining data captured from two
days, the results are again basically equivalent for the inputs used. Once more, however, the KLT
extracted features gave a higher classification accuracy when using the motion segmented data. These
tests clearly indicate that the KLT extracted features as inputs to a classification network provide the
best results. The motion segmented data most likely gave lower results for the KLT features because
the KLT is not shift or scale invariant and the motion segmented data is much more susceptable to these

variations.

4.5 Code Development

As stated in chapter 3, all code was developed using ANSI Standard C. The algorithms developed
as part of this rescarch were tested using carefully developed test data files. Whenever possible, these
files were run on the NeuralGraphics (37) system and code developed for this research to insure proper

operation of the developed code.

4.6 Summary

This chapter presented the results of testing several different networks used for recognition or
verification of face images. Networks tested consisted of a back propagation network using the raw
data as inputs; a back propagation network using Karhunen-Lodve Transform coefficients, computed

from the raw data, as inputs; and a back propagation network using features extracted by an identity

network as inputs. As discussed in Chapter 2, these networks had not been tested against data gathered




Table 4.11.

Classification Accuracies for raw image data versus Karhunen-Lo2ve transform extracted
features versus identity network extracted features as inputs to a back propagation classi-
fication network. All training sets attained 100% classification accuracy during training.

For this table, HSD is Hand Segmented Data and MSD is Motion Segmented Data

Classification Accuracies: Raw data vs KLT coefficients vs Identity network features as inputs

Network Configuration
Data set Inputs Hidden Nodes | Outputs (classes) Accuracy
1024 (raw data) 60 30
HSD day 1 20 (KLT coeffs) 40 30
40 (ID features) 40 30
1024 60 30
HSD day1+2 20 40 30
40 40 30
1024 60 30
HSD daylvs2 40 30
40 30
60 23
MSD dayl 40 23
40 40 23
1024 60 23
MSD dayl+2 20 40 23
40 40 23
1024 60 23
MSD daylvs2 20 40 23 34.0%
40 40 23 :ﬂ 13.9%

over multiple days. As such, this was a primary focus of the testing during this effort. The result< show
that all the networks perform poorly when training on data captured on a single day and testing on data
gathered on a different day. However, the most important result for this effort is that verification can be
accomplished over multiple days if the training set used contains data gathered over many days, in this
case 9 days was sufficient, and if the training set is composed of 50 percent target images and 50 percent
nontarget images. For this composition of training data, using a single hidden layer backpropagation

network, and the raw image data as inputs, the verification accuracy over multiple days was 94 percent

4-18




and the false acceptance for the same network was 6.5 percent. This indicates that face verification

over multiple days can be performed with a neural network.

4-19




V. Conclusions

5.1 General

The purpose of this study was to investigate and implement a neural network for face verification
and classification. The objective was to develop a neural network based feature extractor and/or
classifier that can be used for authorized user verification in a realistic work environment. Specifically,
three networks were developed and tested: a back propagation network using the raw data as inputs;
a back propagation network using Karhunen-Lo2ve Transform coefficients, computed from the raw
data, as inputs; and a back propagation network using features extracted by an identity network as
inputs. The following sections present the conclusions. First, the multiple day problem conclusion is
presented, then the identity networks are discussed. This is followed by a discussion of the multiple
class recognition problem; finally, the comparison of neural network extracted features to the strict

Karhunen-Logve Transform features is presented.

5.2 Multiple Day Verification

The most significant conclusions for this research are based on the multiple day verification
results. Multiple day verification is a significant problem that had not been addressed previously in the
literature and the objective was to determine if a neural network could be used to solve the multiple
day verification problem.

The solution to the multiple day verification problem, supported by test results of Chapter 4,
is a single hidden layer backpropagation network that uses raw image data for inputs. When these
networks were trained as two class networks accuracies of 100 percent were obtained for the multiple

day data. It was also found that training set composition is important; the training data that provided

5-1




the best results was a data set composed of 50 percent target individual, captured over 9 days, and 50
percent nontarget induviduals. Using less than 9 days worth of data proved to dramatically decrease
the verification accuracy of the network. This is most likely due to the shift and scale sensitivity of
these networks, also identified during testing. Gathering 9 days of images, ie. multiple prototypes,
allowed the network to learn the shifted and scaled versions of the target which dramatically increased
the verification accuracies. Again, these results are significant because the multiple day problem was

not addressed in previous literature.

5.3 Identity Networks

The objective for this portion of the research was to develop and test an identity network for use
as a feature extractor/input layer to a classifier. The data compression and feature extraction capabilities
of these networks performed as expected. When using the identity network extracted features as inputs
to a classifier, the features were acceptable for classification of data that had been gathered on a single
day; 10 classes could be classified to a 97.5 percent accuracy. Increasing the class size had some effect
on the classification accuracy using the identity network extracted features, however, the accuracy for
30 classes was 96.7 percent and for 49 classes it was 92.8 percent. These results are very respectable
given the larger class sizes. However, the identity networks as feature extractors did not perform
well when using data collected over multiple days. In this case, the maximum classification accuracy
using multiple day data was 20.0 percent for a 10 class data set which indicates that the generalization
capabilities of the identity networks over multiple days is very poor. As such, these networks would

not be useful for feature extractors in a realistic environment.

52




5.4 Multiple Class Recognition

The multiple class recognition problem was addressed because many of the results in the literature
deal with small numbers of classes and constrained data sets. The objective was to determine how well
the networks performed when the data sets were increased in size, numbers of classes, and gathered

over multiple days.

The classification accuracy using a single hidden layer backpropagation network with raw image
data as inputs performed well on single day data. Results of classification for 310 images consisting of
31 classes, 10 face images per class, obtained a 92.9 percent classification accuracy on the single day
data. Classification using two days of data consisting of 620 images of 31 classes, 10 images per class
per day, also performed well for this network which obtained a classification accuracy of 93.3 percent.
The drawback of this network, when using Sun workstations, is the amount of training time required.
As the number of classes and hidden layer nodes increases the training time increases to a point of
being impractical for real world applications to recognition. For example, a network using 800 images
of 49 classes and a hidden layer of 250 nodes required over 30 days to train on the Sun Workstations.
However, using 31 classes and 62 hidden nodes the network can be trainied irf approximately 24 hours

on Sun Workstations and this acceptable for realistic applications.

5.5 Neural Network Extracted Features versus KLT

The objective for this portion of the research was to compare the classification results of networks
using raw data as inputs, identity network extracted features as inputs, or strict Karhunen-Lodve
Transform (KLT) extracted features as inputs. Data for these comparisons consisted of 300 images
representing 30 classes for single day captured data and 600 images of 30 classes for two day captured

data. The testing in this area showed that using the KLT extracted features as inputs to a classification

53




network allowed for classification accuracies of 97% on single day captured data versus 93.3% for
both the identity network extracted features and the raw data. When using the two day gathered data,
the KLT features provided dramatic increases in classification accuracy over the single day data; 53%
for the KLT extracted features versus 5.3% for the identity network extracted features and 3.3% for
the raw data as inputs. The bottom line is that the neural networks using raw data or identity network
extracted data as inputs to a classification network had accuracies as good as networks that used strict

KLT coefficients as inputs.




Appendix A. Source Code

This appendix contains the source code for this research effort. The original backpropagation
code and multilaye. perceptron code was written by Dr. (Capt) Dennis Ruck (29) and modified as
it became necessary. The modifications included porting the code on Sun workstations, adding a
symmetrical sigmoid update rule, implementing an identity network, and implementing a four layer

network, etc. The following code is included in this appendix:

e Makefile The Makefile was setup to allow for variations in the executable files by setting or
not setting various flags; the flags are self explanatory. Understanding the Makefile is key to
understanding the code in this appendix.

o dkmain.c This is the main routine and contains many options depending on the particular flags
defined.

o backpropx.c This is the backpropagation learning algorithm. This code was modified to include
a symmetrical sigmoid updata rule as well as the standard sigmoid.

o display.c This code was developed to display images on the Sun workstation displays. It was
specifically designed to view the identity network training while the training was in progress.

e dkiox.c This code contains the input and output routines for reading weight files, data files, etc.

e ps.c, psx.c, utils.c This code contains the utility routines necessary to gather the data in a
meangful manner. The routines to compute the network, error statistics, etc. are contained in
this code.

e macros.h, globals.h, globals_h These are the '.h’ files, the difference between globals.h and

globals_h is that globals.h is included in all files external to the main routine, dkmain.c.

A-1




¢ makedata.c This code is used to take the 32x32 pixel, & bit gray scale, ascii format image files

and create the necessary data files for use in the main routine.

A.l Makefile

# Makefile

# Created bty Dennis Krepp June 1992

HOST=grimm

HOME=/cub5/dkrepp

NEXT_CFLAGS = -DNEXT -bsd

SUN_CFLAGS = -£68881 -DSUN

SUN4_CFLAGS = -bsd

ATHENA_CFLAGS = -ffpa -DSUN

DEC_CFLAGS = -DDEC

The following flags apply primarily to the mfn.c program:

-DMPX causes data to be partitioned according to training fraction input
-DBACKPROP causes the Back Propagation training rule to be used

(note: if training, this must be defined unless you

code up another trainning rule )

-DTRN causes the weights to be saved and the program to train a network.
-DTRNCOTT causes the net to train the second layer of a Cottrell net
-DNOTRN use weight file weights for testing the network.

-DLINEAROUT causes a network with linear outputs (Cybenko net)
-DSIGMOID causes a network with sigmoidal output units

-DSYM_SIGMOID causes network with symmetrical sigmoid outputs

_DINP_SYM forces input layer to have a sym_sigmoid output

-DSCALE_ETA causes eta to be scaled by the fan-in for each unit
-DNOSCALE_ETA causes a fixed eta to be used for each weight

-DMRUNS use to perform multiple runs on database

-DNODE_OUT prints output node values for sampled iterations of input
-DRANDOM causes random grabbing of data vectors for use in training
-DIDNET causes the net to work as an autoassociator net

(must define SYM_SIGMOID with IDNET)

-DRESULTS causes outputs to be printed to files vs stdout

-DMLP multilayer perceptron flag for output and setup files

-DVIEW view the input and output images (IDNET must be defined also)
-DOJA_ID makes an idnet function with linear outputs as suggested by Oja
-DWTS forces a weight file to be saved after each output interval
SIGMOID_CFLAGS = -g -DNODEBUG -DBACKPROP -DRANDOM -DSIGMOID -DMPX \
-DNOSCALE_ETA -DNOTRN -I.

IDNET_CFLAGS = -g -DNODEBUG -DBACKPROP -DRANDOM ~DSYM_SIGMOID -DIDNET \
-DNOSCALE_ETA -DTRN -DMPX -I.

CYBENKO_CFLAGS = -g -DNODEBUG -DBACKPROP -DRANDOM -DLINEAROUT -DMPX \
-DSCALE_ETA -DTRN -I.

COTTRELL_CFLAGS = -g ~DNODEBUG -DBACKPROP -DRANDOM -DSYM_SIGMOID -DMPX \
-DNOSCALE_ETA -DTRNCOTT -I.

BIN = $(HOME)/bin/$ (HOST)

. #BIN=./

BACKPROP_OBJ = backpropx.c

MFN_CODE = $ (BACKPROP_OBJ) dkmain.c ps.c dkiox.c utils.c psx.c nrutil.c
CcC = CC

SYS_LIB = -1m

mlp: Makefile globals_.h macros.h macros.h nrutil.h malloc.h $(MFN_CODE)
$(CC) $(SIGMOID_CFLAGS) -DMLP -0 mlp $(MFN_CODE) $(SYS_LIB)

echo "Make mlp successfull! *

idnet: Makefile globals_.h macros.h macros.h nrutil.h malloc.h $(MFN_CODE)
$(CC) $(IDNET_CPLAGS) -o idnet $(MFN_CODE) $(SYS_LIB)
echo "Make idnet successfull! *

cybenko: Makefile globals_.h macros.h macros.h nrutil.h malloc.h $ (MPN_CODE)
$(CC) $(CYBENKO_CFLAGS) -o cybenko $(MFN_CODE) \

W e Wk A Gk Nk WG W B Bk Nk gk Mk Wk W Wk Wk Wk gk Wk Wk Wk Nk

A-2




$ (SYS_LIB)
echo *Make cybenko successfull! *

cottrell: Makefile globals_.h macros.h macros.h nrutil.h malloc.h $ (MFN_CODE)

$(CC) $(COTTRELL_CFLAGS) -0 cottrell $(MFN_CODE} \
$ (SYS_LIB)
echo *Make cottrell successfull! °®

stat_norm: Makefile stat_norm.c
$(CC) -g -1 -0 stat_norm stat_norm.c $(SYS_LIB)
echo *Make stat_norm successfull! *

NG2ruck: Makefile NG2ruck.c
$(CC) -g -I -0 NG2ruck NG2ruck.c ${(SYS_LIB)
echo "Make NG2ruck successfull! *

clean: ;rm -f *.0 core

A.2 dkmain.c

dkmain.c: Multilayer Perceptron Program

Written by: Dennis W, Ruck (DS-90), AFTT/ENG
Modified By: Dennis L. Krepp (GE-92D), AFTIT/ENG
Modifications:
1. Modified to allow different lcaming rates (eta’s)
for each Iayer of weights.
2. Modified to run as an Identity (autoassociator) net
3. Maodified to work as a Cottrell net
4. Modified to use a symmetrical sigmoid if desired
5. Modified to print output node values to screen if desired
6. Modified to print the images to the screen if using the
-DIDNET -DVIEW optioas .
7. Modified to work as a 4-layer classification net, which a
slight twist to the Cottrell net in that the classification
% a two-layer "
rop versus 8 one layer.
8. Magﬁed the mul..ple runs option of the code for SUNs

#include <stdio.h>
#include <signal.h>
#include <ctype.h>

#ifndef NEXT
#include <malloc.h>
#else

extern char » malloc();
#endif

#ifdef RESULTS
#define RUN_FILE run_file

#else
#define RUN_FILE stdout
#endif

#ifdef MLP
#define PREFIX *mlp*
#endif

#ifdef IDNET

#define PREFIX "idnet*

#define SIZE 32  /» this is the image size (ie. 32x32) 4
#endif

#ifdef TRNCOTT

#define PREFIX *cottrell®

#endif

#ifdef TRNKREPP
#define PREFIX *dlk*

*




#endif

#ifdef LINEAROUT
#define PREFIX *cybenko®
#endif

#ifdef NODE.OUT
#define SHOW.OUTPUTS out_file

#include <macros.h>
#include <globals_h>

int sivector();

doubt tdvectot(())

double gaussian();

char »get_token();

char *make_file();

void menu();

void  display_inpui();
void  display-output();
double ones.normalize();

static char stop.name[] = "gtop_file.dat";
FILE

char dat.zemp[20].

char  wis_temp[20];

char  wis_ filename[20];

mam (argc, argv)
char ?arcsv{l.

struct sigvec ivec;
char command{80];

#ifdef MRUNS
#define SEEDNAME *seeds.dat"
Char *run_root, *wis_root, *zoo.name,
int start.number, end_number;
FILE  =seed.file;
char zoo.command[256],
char  =run_name;
char temp[20];

int foum;
if

FILE =nun file;

char swis_name, *dat_name;
tng.vector, sample;

double e, acc, tst.zrr tst_acc;

FILE  sstopfi
FILE -out.ﬁle
FILE -plot.ﬁle
FILE

char

m
9har ETUP.FILE. *NODE_FILE, *PLOT.FILE, *RESULTS_FILE;
int i. j» k, target, m;

fesus Create the file strings s+sswsnnd

SETUP.FILE = make.file( *setup*, PREFIX);
NODE.FILE = make_file( PREFIX, *nodes");
PLOTFILE = make._file( PREFIX, plot )3
RESULTS_FILE = make.file( PREFIX, *results*);

lesxss Tell user what type this program is »s»
Tbiscanbelddedlolhent’)eulputﬁkMr
if necessary

.

#ifdef RESUL
RUNFILE = fopen(RESULTS.FILE. ‘w'),

A4




#endif
#ifdef MPX
fprintf(RUN.FILE,*mfn: MPX flag defined.\n");

#ifdef IDNET
#gpul"‘i?ftf(RUNﬂLE'mfn: IDNET flag defined.\n");

#ifdef HOOX
#:gl"’i;\f(f(RUN_Fﬂ.E,'mfn: HOOX flag defined.\n*);

#ifdef BACKPROP
#gll)‘l;?flf(RUN.FlLE,'mfn: BACKPROP flag defined.\n");

#ifdef LINEAROUT
*fgglpftf(RUN.FlLE.'mfn: LINEAROUT flag defined.\n*);

#ifdef SIGMOID
fpnlgglftf(RUN.Fﬂ.E,'mfn: SIGMOID flag defined.\n*);

#e
#ifdef SYM_SIGMOID

fprintf(RUN_FILE,*mfn: SYM_SIGMOID flag defined.\n");,
#endif

#ifdef RANDOM
intf(RUNFILE,*mfn: RANDOM flag defined.\n*);

fprintfiRUN_FILE,*mfn: RANDOM flag NOT defined.\n");
#endif

#ifdef MRUNS
k%tf(kUN.FlLE,'mfn: MRUNS flag defined.\n");

#ifdef SCALE_ETA
fpri{llf(RUN.FlLE,'mfn: SCALE_ETA flag defined.\n");

#endif
#ifdef TRNCOTT
#ef%l‘}?ftf(RUN_FlLE,'mfn: TRNCOTT flag defined.\n");

#ifdef TRNKREPP
#:]'J‘l('iilpftf(RUN.FILE,‘mfn: TRNKREPP flag defined.\n");

/sxx2s Open file sxuxd
if ((setup = fopen(SEfUP.FlLE, *r*))==NULL)

printf(*I can't open the input file");
exlt(—l),

lsssx+ Read setup file for net_type x»x»d
fscanf(setup, * $d°, &net_type);
fskip li semp).

lexs22 Reading setup file sexnt
fscanf(setup, * 44", &initial.seed);
fskip.li semg
fscanf(setu d*, &part_seed);
ffwanf(mp m&): &tm._seed );
fskip.line(&mp),

lexnes Get filename to save weights 10 ss# 4
Feulwts.lempﬂo. setup);
skip line(setup);

wlule(! wis_temp(i]) i++;
wis. 1='\0";
wis_name = wis_temp;

lennnx Reading setup file sennd
t;gc:‘nf(semp. *$d°, &max_iterations);
S|
fscanf( 'td) %d &d %d°,&num.inputs,&hide_one,&hide_two,&num_outputs);

by’ 6.num_in|m-1),

A-5



mean = dvector(0,num_inputs—1);
sd = dvector(0,num_inputs—1);
input_mask = dvector(0,num.inputs—1);

fexxxx Get filcname to read data from ss»» 4
fgets(dat_temp,20, sctup);
sklp-lme(semp).

wh:le('nsspwe(da.temp[n])) i++;
daucmpl 1=\0;
dauemp

Iesnns Re&! se(u ﬁlc shnnd
fscanf(sew *, &output_interval );

fshp E)’
fsklp.lme(p in);

norm.type =
fscanf(setup, '%d' &norm.type );
fskip_line(setup);

#ifdef MRUNS
fscqx;f(semp, *td %d°, &start_number, &end_number ); fskip_line(setup);

f«» Close the Sctup file s+
fclose(setup);

#ifdef IDNET

mp -ﬂm“s = num. onmns,
nUM._Outputs = :um.in
#endif

fessxs INIT THE NET s**ss22xsé
init_net();
I« fprintfRUN_FILE, "\nUsing %d features in %s. ", num_inputs, dat_name);¥
%n(num_mwts) ﬂr.l:\sth] = 5 P

Fi

" CREATE.FILE( stop.file, stop_name, "mfn" );
‘prmd‘(( ;lop:ﬁﬁlc. *"Delete this file to force a save of the weights.\n");
op.

*

/sxsxe READ THE DATA sssssxsxsxsené

read_dat( dat_name ); /+» function found in dkiox.c =¥
fprintf(RUN_FILE, *\n%d vectors read®, num_vectors);fflush(stdout);
#ifdef RESULTS

fclose(RUNFILE),
fendif
#ifdef MRUNS

if ((seed file = fopen(SEEDNAME, *r*)) == NULL)
printf("I can't open the seed file");
exit(—1);

A6




loopi(start_number) fscanf(seed file, *$d $d $d°, &initial_seed,
&im.sced

&gm.seed. }
f«» Multiple RUNS loop =4
for(foum = start_number; foum<end.number; faum++) {

iterations = 0;

e+ Create the file names =4

I» spnnm’wmp. "%s%d%s%s", PREFIX, foum, ".", "RUN");
run_name = (emp;¥
sprintf(temp, '\stdtsts , PREFIX, faoum, *.*, *WTS*);
wis_name = temp;

/» CREA run._file, run_name, "mmp2" );4

fscanf( seed.file, *¥d $d %d°, &initial seed, &part.seed, &trn_seed );

Inmahn/readthewcigbtsmdrbmhows
—calls utils.c —> gaussian

#nfdef TRN . N
loopn(num.stales) xhat(i] = gaussian( 0.0, 1.0);
k_mpx_xfer();

#ifdef NOTRN
read_wis(wis_name);

#ifdef TRNCOTT

srand48( initial_seed );

read cottrell_wts(wts_name);
#endif

loopk(net_type)
l{oopi(uyerlkl—»nnm-outth)
loopj(Layer{k}—num.inputs)

La —sw_old[j](i] = La — :
um}_‘:&% il ]E]o o yer{kj—w(jllil;

La ]—otheta.old[n] = IAyer[k]—othem[l].
}Layerw[k]—odtheuh] =

}

/»» Partition the data into training and testing sets 4
#ifdef MPX

partition trn_frac, part.seed );

#ifdef IDNET ) "
#eadif ! ’

v

#ifndef NOTRN
fesess Normalization of Data ssessses
0 No Normalization

Normalization.
2 Normalize (o range [-1,1]

A-7

- T A L R M el A




Select Normalization Criterion in
setup file
switch (non:.gr) {
case 1: gaussian_normalize ();
break;

2 emalize();
“‘:n‘n;iv.&"i‘o'&“}m&),

default:  printf("Invalid selection.\n");
exit (—l)
}

#endif

#ifdef NOTRN

/+» Normalize all data using previously generated mean/sd »#
loopi(num_vectors) {

l;d%pl!\(nh]b] (db.n{:lnlul—munbl)lslbl.

»lfdeleNEl‘

[« now divide all data by the max_valve 4

_ printf(*\nmax_value = %f °, max_value);
if (max_value # 0.0)

loognmm)
DB Fib. ol imax. value);

#endif

#ifdef RESULTS
RUN_FILE = fopen(RESULTS.FILE, *a*);

e
I num.vectors, temp.out
nd.out[il[il = db.ou([l]lgl.

D outlill] = db G
O = . 10{ 1 M
tfRUN_FILE,

"\nNormalized IDNET output database initialized\n®),
/++ end IDNET ifdef »4

/== Print header for RUN file «4
munmwn )
UN_FILE, "Wt Selection seed (initial_seed): %u\n\
Db Partition seed (part_seed): %u\n\
'rrammg Vector Selectl.on seed(tm seed) : Su\n*,

UN 'Wexghts ﬁle ts\n' wis_name );
tf(RUN.FllﬂletwoﬂcdeSue td-3d-td- )%d\n'
num_in .one, 0, nUM_outputs );
(R J’-'ILE. Source database: $s\n", dat_name ),
intf(RUN_FILE,"Training Rate (eta_in): $g\n\
Training Rate (eta_out): $g\n\
Training Rate (eta_H1_H2): %g\n\
Momentum (alpha): $g\n\
Batch Size: $d\n°®, e(un,m.mn,m.ﬂl.ﬂlalpha.bﬂchsm )
LB.'Peatures Used:

{pﬂﬂﬂ?R )

(RUN_FILE,"A11 Features in %s.\n®,dat_name);
UNFILE,*\n*);

‘pnntf(RUN.FlLF., Fraction vectors assigned to training: $g\n®,tm_frac),

fm'mll'(RUN.!-’II.E,'Noru\ahzal:xon td\n*, norm.type );

print(RUNFILE,* \n"*);
stats( &erv, &ace, TRAIN ),




stats( &usterr, &tstace, TEST ); L
fpnntf(RUN.FlLE..'I $6d, ERR: $6.4e, ACC: %6.4e, TSERR: %6.4e, TSACC: %6.4e\n", iterations,
CfT, acc, tst.erv, tst_acc );

lo(.ﬁle-f?en(l’wr.!-'n.& *a*);
p le, *%6d $6.4e $6.4e $6.4e ¥6.4e \n*, iterations,

acc, tst_err, tst_acc );
fclose(plm.ﬁle).

#ifdef RESULTS
fclose(RUNFILE);
¥endif

#ifdef NOTRN
#ifdef IDNET
ndnet.ﬁb = fopen(*mlp_idnet .dat", *w*);
idnet_file, *$d\n%d\n*, Layer{1]—num_outputs, temp_outputs); loopj(num_vectors)
nm.om puts) Layer{net_type—1}—X[k] = db.in{jl{k];
‘t(r(lfw.lﬁ]n’-w gL
~+num._outputs
(ldne(.ﬁle. $1f °, Layer{1}—Y[i] );

loofpk(teﬂgp
'%lf *id 3
fprintf(idnet file, *\n ool )

} lose(idnet_file);
Wendif le)
exit(—1);

#endif

/++ training loop =¥
initstate( trn_seed, state, STATESIZE );
#ifndef NOTRN
save.wts( wis.name, dat_name ),
#endif

I+ sweeps loop ¥
loopi( (max_iterations/mim_tm)+1 ) {

fe= update loop »4

loopj(num.tm) {
#ifdef RANDOM
* k::amet = tm list{random()%num_trn};
kng?a = tm_list{iterations%num_trm};

T num.vea]on) )
vec.num{m) == target
break;
loopk(nmn.mp:ng;tyet[n;.l';'pe-l]—o)([k] = db_in[tng_vector](k);
loopk(num_outputs) D_out[k) = db_outfng_vector](k); '
/ess compute the outputs sesd
compute_output();
fs» Display images if IDNET defined »4
#ifdef IDNET *
if ((ierations % (int)(10.0+output_interval)) == 0)

display.input( tng_vector, max_value, SIZE);

dupll:yy.mr::((( n’nx.nlue. SIZE),
Ie NODE OUTPUT
#ifdef NODE.OUT

-

A9




SHOW_OUTPUTS = fopen(NODE.FILE, *a*);

fese» prints in, !s and/or ts u to a
i o0 i B e cipes
to "if” staternent
below for dlc{'mn %

L Y

if ((iterations % (int)(1.0+output.interval)) == 0){

if > 10)
e o

clse
sample = num_outputs;

fprintf(SHOW_OUTPUTS, * Iteration $d: Random vector %d:\n°®,iterations, target);
fprintf(SHOW_.OUTPUTS, * Desired Qutputs: °)
loopk(samplc) fprintf(SHOW _OUTPUTS, * %4.3f° ,db.mn[ms-veaor][k]),
IDNET
fpnntf(SHOW.OUTPUPS *\n IDNET Outpu
loopk(sample) fprintf(SHOW_OUTPUTS, * %4 3f' uyer[0]—oY[k]),

fpnntf(SHOW.OUTPUTS *\n Actual Outputs : *);
loopk(samplc) fprintf(SHOW_OUTPUTS, * %4.3f°, Layer[O]—oY[k]),

;pnnlf(SHOW.OUTPUTS, \n\n");

fclose(SHOW_OUTPUTS);
#endif /sxesxxs END NODE.OUT #2##s4xs4
#ifdef BACKPROP

backprop(alpha);

iterations++;

if(iterations >max_iterations) break;
#ifdef RESULTS

RUN_FILE = fopen(RESULTS.FILE, *a*);
#endif
if((iterations % output_interval) == 0)

stats( &err, &acc, TRAIN );
stats( &utst_err, &tst.acc, TEST );

fprintf(RUN_FILE,"I: %6d, ERR: $6.4e, ACC: %6.4e, TSERR: %6.4e, TSACC: $6.4e\n*, iterations, em,
acc, tst.erm, tst.acc );

lot_file = ?CMMT.FILE, *a");

?pnn le, °$6d %6.4e $6.4e t6.4e %6.4e \n",iterations,
acc, tst_err, tst_acc );

fclose(plo(.ﬁle),

#ifdef RESULTS
fclose(RUN_FILE),
fendif

#ifndef NOTRN
save.wis( wis.name, dat_name );

/ﬁtf&’tf*e weights to file after each epoch 4
sprintf(wis filename, *$s%d°, wis_name ,(int)iterations/autput_interval));
sprintficommand, *%s %s ts°, *cp*®, wis.name, wis_filename); %

A-10




m(comdr.

}

#ifdef RESULTS
fclose(RUNFILE);
#eadif

}Iuendugmlooptd
}htmdswecpsloopd

#ifndef NOTRN
save.wis( wis_name, dat_name );
#endif

max_iterations) break;

#ifdef RESULTS
RUN.FILE = fopen(RESULTSFILE, *a*);

#ifdef IDNET /+* Display last image =4
display_input( tng.vector, lmx.value, SIZE),
splay_output( max_value, SIZE,

stats( &err, &acc, TRAIN
um(&m.etr,&m.acc.'lm).

fprimtkRUN_FILE,*1: %6d, ERR: $6.4e, ACC: %6.4e, TSERR: $6.4e, TSACC: $6.4e\n*, iterations,
€17, ACC, st err, tst.ace );

FILE, *a*);
Fpnntf(plotg "36d %6.4e $6.4e $6.4e ¥6.4e \n*, iteraions,

aCC, tstetm, tst.acc );
fclose(pkn_ﬁle).

#ifdef RESULTS
Jclose(RUN FILE);

e write hiddea node output to a file for mip training =+
#ifdef IDNET = d
idnet file = fopen(*mlp_idnet .dat*, "w");

fprintf{idnet_file, * $d\n%d\n"*, Layer{1]-+num_outputs, temp-outputs); loopj(num_vectors)
NMP“'S) Layer{net_type—1]—X[k] = db_in[j]{k];
fpnntf(xdnet_ﬁ]le, % 9 )
idnet file, *$1f *, Layer{1]—YIi] );

temp. ) .
%ﬂ mluﬂ"‘mg\m . id_outfj}Ik] );

)clple(idnet.ﬁle):
#endif

swnch(norwe){

case 1. {an unnormalize (4
break:

}

#ifdef RESULTS
fclose(RUNFILE);
feadif

A-11




S e o
bd nnas *
#endif

A.3 backpropx.c

Mopxc mewppmmgmebckmmmkt‘or

yer perceptroas. This version works nunimsot‘hyus
and uses the Layer{] array.

Dennis W. Ruck, DS-90D

AFIT/ENG

#include <stdio.h>
#include <math.h>

#include <macros.h>
#include <globals.h>
void compute._dels();
void compue.de}:(x(

void backprop();
void backpropx();
void compute _dels()

.
'y

Is: computes the deltas for a actwork. Uses net_type
mﬁmwm what layers to compute for.

swucu(neuyve){
mz

case 3: eompme.dekX().

defml( fpnntf(stdetr *compute_dels: can‘t compute deltas for \
net_type = %d.\n", net.type);
exit(—1);
break;

}
} f»+ end compute_dels() »4

LS

void compute._delsx()
{double sum;

A-12




it ijk
loopi(Layer{0]— num_outputs)
#ifdef LINEAROUT
Layer{0]—del(i] = (D.out{i]—~Layer{0}— Y[i])+Layer{0]— mask[i];

#ifdef OJAID
Layer{0]—delfi} = (D.out(i]—Layer{0]— Y[i])sLayer{0)—mask[i];

o0y it 2.(0.5)8(1.0  (Layer{0]— YiilsLayerlO}—Y[iD)e
- 1] =(VD)s(1.0~ — Y[i}* —

Do) ~LayertO— Y i) ayol] o skl

#ifdef SIGMOID

g 7
for(k=1;k<net_type;k++)

loopj(Layer{k]-+num_outputs)

sum = 0.0;

loo —1]—
mgig_agr[k —]l]:odel[i]tﬁ) -1} wijllil;
#ifdef SYM_SIGMOID

La J—dellj) = (0.5)+(1.0 — (Layerk]— Y([j)+Layer{k]— Y(iD)) »
_yedksnm‘u[;ex(k]—omask[j]; ye b ye U

#endif
Yl = (0.5)0(1.0  (Layerlk|—Yiil+Layer{kl~YGD)

b = 0- — * — *
~ " sumsLayerfk)—mask{jl;

#endif
Mﬁfygég]M%Dl k}—Y[j}(1.0-La Y
— = — s(1. — *
wmd‘l.b mliale & Bl yerlk]—Y[iD)
#endif
ﬁfﬁfwﬂkl de(l)[llin Layer{k}— Y[j]*(1.0—Layer{k]— Y{j])
— = — *(1. — *
.. sumsLayer{k]—mask(j};
#endif
}
}
} 7+ end compute_delsx() »+
id alpha)
}
backprop: Implement the backprop weight update rule.
INPUT: pet_type
switch(net_type){
case 1:

case 2:
case 3: bagkpmpx(alpha);
default :fpr'imf(ndefr.'backprop: Illegal net_type = %d\n*,nettype),
exit(—1);
}
}
void backpropx(alpha)

¢{lwbk aipha;

A-13

S I S




backpropx: Backprop update for a multilayer net.
INPUTS: Layer{}, D_out
OUTPUTS: Layer(]

double leu. ha.
it ijk e:%h
lalpha = alpha;
batch.cnt++;
compute_dels();

1= Update all layers 4

Hoors((actiype — 13
k((net_type — 1)

#ifdekf('(l'RNKREPPl)
net_type —
loopki(net.type ~ 1))

#ifdekf(TRN )
bogtoc o

#ifdef SCALE_ETA
leta = Layer{k]—eta/double)X(Layer{k]—num._inputs);

#ifgf NgSC'[AkliE.ErA
= —tela;
#endif ve o
#ifdef IDNET
z(epoch <3 &&(k—O))

+ epoch);
lf((epoch > 25)%&&—0))

I« if{(iterations % num_trn) == 0)

J printf{"\n epoch = %d, cta = %f\n",cpoch,lcta);
#endif

J«x Compute the change in the weights s4
loopj(uyerlkl—mulﬁ‘-eoutpm) sh

Layer{k]—dwl(i](j] += hyﬂikl-°delbl‘laycrlkl~x[il;
]—+dtheta(j] += Layer{k]—del[j);
fee U if 4
{u pdate the .s:"u f indicated »

loopj(hyel{k]—onnm.otnp\m)
b:;kywlkl—o L l—OFF) continve;

A-14




tW-
]-ow [}]-chla‘u J—dw(illj
Ll *(Lwﬂfk wiil(j]— Lyer[k]—-w.old[n][,]),
Layer{k]—sw_old[1)[j] = tW;
Layer{k}—dwl[i]j] = 0.0;

= ]
hyedk]—'m]ﬁlem-u —dthetalj] +
—La —sthetaold[j]);
La - ld[ll -);er[k lhﬂ![l] yer{k] old[iD;
}hyer{k —sdthetafj] =

} /++ end weight update »4
} /++ ead layer update »+

if(batch_cnt==batch_size) batchcnt = 0;
} /++ end backpropx() s+

A4 dkiox.c

/.
¥

dkiox.c: Utility Functions to support perceptron I/O

Written by: Dennis W. Ruck, DS-90D AFTT/ENG
Mmod:ﬁ by: Deanis L. Krepp, GE-92D AFTT/ENG
cations:

1. read_dst modified to save results to files
2. read.wis modified for a Cottrell net

#include <smngs h>
#include <math.h

#include "macros.h*
#include *globals.h"

#ifdef RESULTS
#define RUN_FILE stdout

#define RUN_FILE stdout

void save_xfm();

Iseaxss VOID SAVEWTS
save_wits uses the following global input variables:

num_inputs, hide.one, hide_two, num_outputs

mm.:éam(“"' setting weights)
used in

part_seed, trm_sced

num._states

A-15



void save.wts( wis.name, dat_name )
¢{:har s»wis_name, +dat.name[];

FILE »wts;
char »temp, »tkn;
int i=0;

I« printf("kpiox.c- save.wis \n");¥

CREATE.FILE( wts, wis.name, *save_wts" );
fprintf( wis, "WTS_TYPE: %d\n", wis_type );

rintf( wts, °%d -- Number inputs\n®, num_inputs );
intf( wts, "$d -- Number H1 nodes\n®, hide_one );
rintf( wis, *$d -- Number H2 nodes\n®, hideiwo );
fpl'imf( wts, "$d -- Number outputs\n®,n 3
fprimf( wts, "$d -- Number 1terat10ns\n',nenmons ),
printf( wis, "%d -- Initial wts seed\n", initial_seed );

lexx Now save the weights sx+4
;t.t Use net type s»4
i

1 :'Onchyer
2 :'nvolaie
3 : Three layer
wad

lexx Copy weights to the state array s«4
switch(net_type) {
case 0: fprintf(stderr,"save_wts: Illegal net_type
exit (—1);
break

.
y

$d!\n*, net_type);

1

casel:
we% xk_xfer();
case mkmp 3

default: fprintf{stderr,"save_wts: Illegal net_type
exit (—1);
break:

¥d{\n*, nettype);

}
loopi(num_states) fprintf( wts, "$e\n*, xhat[i] );

fe= Save additional wits info for newer wis files »#
if( wis_type == WTS.TYPE.1 )

intf( wis, *%d -- Partition seed\n",part.seed );
intf( wis, *%d -- Training seed\n®, trn_seed )
ti wis, :;EA" Source database\n' dat_name );
loopi(wm.in fpnntf(wts *$d\n", fir list[i] );
wis, "%d -- Normalization method\n' norm.type );
wis, °Sf -- Normalization max_value\n'.(ﬂou)max.vahne )
wu. *se -- Praction assigned to training\n®,tm.frac );
num_inputs)

fprintf( wis, *$£ -- mean[%d]\n®, (float) meanfil, i);

A-16




iprimf( wis, "$£ -- sd(8d]\n", (float) sdfil, i);
}

fclose (wts);
} /% end save_wis ¥

void read_wts( wis_.name )
char =wts_.name;

*W‘S',
char xtemp, stkn, first;

int i=0,tkn.len;
double junk;

I« printf("dkiox.c— read_wis \n");¥

Ianx n the wis file *»+
OPEN wts, wis_.name, *read_wts®);

l=2 Check if the wis_type indicator is present x4
if( ( ﬁrst=fgetc(wtsl);z ‘W) {
I»» No wis_type indicator present »4
/»x Aiempt to push it back onto the input stream *+4
if( ungetc(first, wis) == EOF ) {
fprintf(stderr, *read_wts: can't return character to input stream.\n");
exit (—1);

svts.type =WTS_TYPE.Q;

else {
l«x wis_type indicator present «¥
tkn = tgﬂ_token(wts); lex getting remainder of WIS_TYPE: label »4
fscanf( wis, "$d°, &wis_type );
fskip_line(wts);

lexx Read the data #»+

fscanf( wts, "%d*, &num_inputs );

fskip_ line(wts);

fscanf( wis, °%d°, &hide_one );

fskip_line(wts);

fskip_line(wts);

fscanf( wts, *¥d*, &num_outputs );

fskip_line(wts);

fscanf( wts, "%d°", &iterations );

fskip_line(wts);

fscanf( wts, *%d°*, &initial_seed );

fskip line(wts);

printf(*num_inputs = ¥d \nhide_one = %d\nhide_two = %d\n\
num_ovtputs = $d\niterations = $d\ninitial_seed = %d\n\
wts_type = $d\n®, num.inputs, hide_one, hide_ two, num_outputs, iterations,
initial_seed, wits.type );

/sxs Now get the weights s«

l+x= First determine net type »»+4
Jnex

Type
0 : Single perceptron
1 :Ongla}’ecr piro
2 :Twolaﬁcr
34:1'hrec yer
*h
if ( (hide.one == 0) && (hide.two == ) && (num_outputs == 1)) net.type = 0;
else
if({hide.oneuO)&&(hide_two-O))neuypc:l;

elscs
if ( (hidetwo == 0) ) nct_type = 2;

A-17




clse nettype = 3;

B
printf(*net_type = %d\n°, net_type);
switch (net type)
case0 :
casel : output_layer=&l.l;bmk;

case2 : outputlayer=
num_states = num_mpmsn-h:de.one + hide_one +
break; hide_onexnum._outputs+ num.outputs;

case3 outpul.layer = &L3;
num.states = npum.in ts-tlndc.one + hide_one +
hide_onexhide_two + hide_two +
hide_two*num_ outputs+ num_outputs;
} break;

/«x Read in weights using the nettype =+

/=== First read into xhat array »«+#
loopi{num_states) fscanf(wts, REAL_FMT, &xhat[i));

/= Copy weights to the layer structures =4
switch(net-type) {

case 0: break;
casel

mk k.mp2.xfer(),
k.mp3.xfer(;

default: ’pﬁntf('read_wts: Illegal net_type = %d!\n", net.type);
g

»

/= Read in additional wts info for newer wis files *4
oot s, e opant sced ) fskip. line(wis)
scan *$d* ; wis);
fscanf( wts, *$d°, &trn_seed ); fsknp‘_’lme(wts)
fsklp_lme(wts)
= get_token(wts); /«* Skipping ovcr "FEATURES:"
oopn num.inputs) fscanf( wts, * %d' list[i] );

l

wis, *$d°, &n g wis),

I« fscanl(( o% )l%skip).hne(ms)'d
fscanf( wts, REAL.FMT &]unk ); fskip_line{wts);
loopi(num_inputs)

scanf( wts, REAL FMT, &mean[i]);
fskip_line(wts);

fscanf( wis, REAL_FMT, &sdli]);
gsklp.hne(wls),

}
fclose (wts);
} 7+ end read_wis

fexsssnsren VOID READ_KREPP.WTS ¢
void read_krepp_wis( wis_name )
char swts_name;

chf ey, tkn, fi

*| * m
int mn.len,junk,
int d,)

int X =0

lens the wis file s»4
OPEN wis, wis_.name, *read_wts® ),

A-18




e+ Check if the wrs.type indicator is present »4
if( (first=fgetc(wis)) # ‘W) {
/«x No wistype or present =4
I«x Atempt to push it back onto the input stream »#4
if( ungetc(first, wis) == EOF ) {
fprintf(stderr, *read_wts: can't return character to input stream.\n");
exit (—1);

lvts.type = WTS_TYPE(;

}
else {
F«» wis._type indicator present ¥
tkn = get_token(wts); /#x getting remainder of WTS.TYPE: label +¥
f wits, *$d°, &wis._type );
fskip_line(wts);

/sxx Read the data »»4

fscanf( wts, " $d", &num_inputs );

fskip_line(wts);

;sgmf( wis, 'gd' , &hide_one );

skip Jine(wts

fscanf( wts, "%d*, &junk );

fskip line(wts);

fscanf( wis, "$d", &junk );

focanl{wiv, 34, &junk );
Wls. . L] ;

fskip_line(wis);

fscanf( wis, *¥d", &junk );

fskip_line(wts);

Isxx Now get the weights =4

/+x» Net type = Three layer Krepp »«+4

outputlayer = &L3;

num.states = num.mputsthme.one + hide_one +
hide_oneshideswo + hide_two +
hide two*num_outputs+ num_outputs;

/«» Read in weights using the net_type =4

/e»= First read input layer wis into xhat array »+¥

loopi((num.inputs+hide_one + hide_one))
fscanf(wts, L_FMT, &xhat[i]);

lexx close the weight file x»+

fclose (wts);

f«#» Copy weights to the Iayer Structures. #x+*
»» this code was copied from k.mp3_xfer and ++«
=+ was specialized to read in the weights wa

== fora p net setup »

fees Get first layer s»4
loopi(hide.one)

{
loop (num_inputs) L1 w[j][i] xhat[IDX++];
hat{(IDX++

il =x

les2x Get second layer x»+
l{oop:(hndc.xwo)

) L2.w(jl[i] = gaussian( 0.0, 1.0 );
L2ty = gmasand 0 1 ¢

/»»+ Get third layer #»4
loopi(aum_outputs)

A-19




loo hide_two) L3.w[j aussian{ 0.0, 1.0 );
metm ] = gaussnan g0 ) (

pnntf('\nxrepp output weights initialized \n®*);fflush(stdout);
} 1+ end read _krepp._wis ¥
/sssxsssxs VOID READ_COTTRELL_WTS 4

void read_cottrell_wts( wts_name )
char »wis_name;

LE swts; -
char stemp, »tkn, first;
mt i =0, tkn_len, junk;

ml ﬁ)X-O

e the wis file »»4
OPEN wis, wis.name, *read_wts" );

I+ Check if the wits_type indicator is present =4
if( (first=fgetc(wis)) # 'W’)
/sx No wis_type mdfca:or t{cscnl =y
/»» Atempt to push it back onto the input stream »4
if( ungetc(first, wis) == EOF ) {
fprintf(stderr, "read_wts: can't return character to input stream.\n*");
exit (~1);

&ns.lype = WTS_TYPE.0;

else

Iu{wts.lypc indicator present »¥

w.loken(wts). l«+ getting remainder of WTS_TYPE: label 4
f: *$d°, &wis.type );

}fsknp.hne(wts 3

/e»x Read the data =»4
fscanf( wts, " $d°, &num_inputs );
fsklp.lme(wts)

'scanf( wis, "$d°, &hide_one );
fsklp.lme(wts)
fscanf( wts, "%d°, &hide_two );
fskip_ line(wts);
fscanf( wits, *%d°, &junk );
fskip_line(wts);
fseanf( wis, '%d' &junk );
fskip_line(wts
fscanf( wts, '%d' &initial_seed );
fskip_line(wts);

/sxx Now get the weights #s4
Jens Net t_?e = Two layer Cottrell »»+
pet.type =

output_layer = &12;
num.states = num.mputsth:dc.one + hide_one +
hide_one+num_outputs+ num._outputs;

le» Read in weights using the net_type »4

/e#+ First read into xhat array »+4
loopi(num_states) fscanf(wts, REAL_FMT, &xhat[i]);

Ie#+ close the weight file ss4
fclose (wts);

lexs Copy weights to the layer structures. ss»»
Ll Moo%e was copied mﬁ“ k_mp2 _xfer and #»»




*& was specialized to read in the weights »»»
=» for a Cottrell net setup #

Jess Get first layer x»4
loopi(hide_one)

{
loopj(num_inputs) L1.w(j][i] = xhat(IDX++];
Cr Rl = PhaiDie )
Jexx Get second layer s»+
loopi(num_outputs
loopj(hide_one) L2.w(jl{i] = gaussian( 0.0, 1.0 );
L2, i] = gaussian( 0.0, 1.0 );
printf(* \nCottrell output weights initialized \n®);fflush(stdout);
} /= end read_cottrell_wis ¥

/ex2sex VOID READ_DAT
Read a database from file dat_name.

INPUTS:
num_inputs: determines how many features to use.
fir_list[): determines which features to use.
num.outputs used if IDNET is defined.

OUTPUTS:
num.vectors
db_out()]
db_in[][]

void read_dat( dat_name )
char »dat_name

3
»

lgILE wdat_file;

double temp;

int cnt =

int db.mp\ns db_outputs;

int  ij, inpcnt, went, est.vectors;
int scan_val;

char »wctemp;

len n the file »4
OPEN _FILE( dat_file, dat_name, *read_dat");

#ifadef RESULTS
fprintilRUNFILE, *\nReading %s: *, dat.name); fllush(stdout);

R
fscanf( dat_file, “%a°, &nb.mﬁ';':s ): fskip line(dat_file);

/e estimate the number of training vect
(he sumber of words and divide by (inputs+outputs+1) »#

A-21




glsc break;

est.vectors = wcat /(db-inputs+db_outputs+1);

#ifdef DEBUG
fprintf(stderr,"Est imated number of vectors in %s is $d\n*, dat_.name,
l“oigft.vectou;);

Inx Reset file for reading the vectors »4
rewind(dat_file); fskip_line(dat_file); fskip_line(dat_file);

/e» Allocate db.in and db_out using the est_vectors+2 =+
db.in = dmatrix(0,est_vectors—1 O.num_mputs— )%
db_out = dmatrix(0,est_vectors—1,0,num_outputs—1);
vec.num = jvector(0,est.vectors—1);
= jvector(0,est.vectors—1);

#nfdef NET

id_out = dmatrix(0,est_vectors—1,0,db_outputs—1);
#endif

/+» Read the trainin t vectors »¥
while( 1) e

{Iu get next data pair =¥
if( (scan_val=fscanf( dat.file, " $d", &vec.num[cnt] )) == EOF)

num..vectors = cnt;

inpcnt =0;
loopi(db_inputs)

if ( fscanf(dat_file, REAL_FMT, &temp) == EOF)

printf("read_dat: incomplete file - lacks full input vector.\n*");
exit (—1);

1}f( (inpcot<num_inputs) && (1 == fir list{inp_cnt]) )
db_in[cnt){inp_cnt++] = temp;
Ln?? fwanf( le. REAL.FMT, &db.out[cnt](i]) == EOF)

pnntf('read_dat: incomplete file - lacks full output vector.\n®);
exit (—1);

cnt++;
#ifndef RESUL’

if(cnt% 10==0) {fpnntf(RUN.m.E,' *+), fllush(stdout);}
#endif
#ifdef DEBUG

printf(*scanf = %d, cnt = %d\n", scan_val, cnt);
#endif
} /o= end while «4

if{est_vectors#num_vectors) {
fprintf(stderr,*read_dat: error in reading file: est_vectors = %d, \
num_vectors = td\n", est_vectors, num.vectors);
exit(~1);
}
fclose(dat_file);
} #+ end read_dat 4

A-22




void save.dat( dat_name )
char sdat_name;

save_dat: Routine to save a +.dat file. The purpose is to save the
raw MSF db_in{][] and db_-out{][] amys on disk because the read_msfdat

is a very slow process.
INPUTS:

db_in[]f]

db_out{ll)

vec.aum{]

num_inputs, sum_outputs, um._vectors

OUTPUTS:

None.

*»

int Lk
FILE =dat;

printf(*kpiox.c-- save_dat \n®);

CREATE_FILE( dat, dat_name, *save_dat" );

fprintf( dat, *%d -- num_inputs\n%d -- num_outputs\n®, num.inputs,

num.outputs );

loopk(num_vectors) {

loop,!(m;‘t:t'_u;:\?ts) fl‘)'re:cn-t;‘l(dat.]')%e *, db_in[k}[j}
um.outpuls te *,db s

}mjl(f(dﬂ. pu fprintf( dat, *%e -out] l[ll)

fclose(dat);

} 7+ end save_dat 4

0id make_mes output
Xouble sinput, E(W“:]l:l)tl’ )
{

[

P:weduretommdmformmgmdmung
classification algorithms.

NOTE: It is assumed that the random number generators have been
set before calling this routine.

Use srand48(seedval) to initialize random number gencrator.

Output: Two Armrays of double. The first contains the input, and
meswondoonunz‘tbeduuwwtput. pot

#define LOW.OUT 0.10
#define HIGH.OUT 0.90

int class;
double radius;
int i;

prif("kpiox.c-- make_mesh \n*);

] = rangesec 0= 30

- Al




loopi(4) output(i] = LOW_OUT,

e» — decide appropriaie output for this vector ¥
radius = sqrt( mput[O]tmput[O] + input[1]«input[1} );
if(radius > 2.5) ﬂ
ﬂ(myul[l]>0 .0) /« class 3 ¥ out t[2] = HIGH.OUT;
class 4 4 output{3} = HIGH.OUT;

nf(niims<o.5) t+ class 1 ¥ output[0] = HIGH.OUT;
else

if(radius<1.5)

if(input[0]>>0.0) /« class 2 ¥ ou l] HIGH.OU'P
}else I class 1 ¥ output[0] = HIGH

Ise {
0]1>0.0) /s class 1 4 0 HIGH.OUI‘
g
}

}
}

void save_xfm( xfm.name )
char sxfm.name;

INPUT: xfm.name
Layeﬂneu -1]
mean(], sd[]
pum_inputs

OUTPUT: Data written (o file

int i, j;
FILE sxfm;

printf("kpiox.c-- save_xfm \n®);

CREATE_FILE( xfm, xfm.name, *save_xfn" );

fprintf(xfm, °$34 -- num_inputs\n$3d -- num_outputs\n®,
uyer[neuype-l —s num_inputs,
Layerinet_type—1]—num_outputs );

/«» Print the normalization data

loopi(num_inputs) fpmtf(xfm, tz $E\n*, mean(i), sdfi] );

fex Print weights data »4

—1]—ni

loopt(uyedw-lvge mn;wqm e
}loopj( o in guun_ l‘ye::{fm. 3E * Rl na_iyfe 1-wijllil);

fclose(xfm),
} 7+ end savexfm 4

A-24




AS psc

ps.c: Ulility Functions to support perceptrons
Denanis W. Ruck, DS-90D
AHT/ENG

LS

#include <sidio.h>
#include <math.h>

#include <macros.h>
#include <globals.h>
#ifdef RESULTS

#define RUN_FILE stdout

felse
#define RUN_FILE stdout
#endif

int find_max();
void

int k-mp2.xfer()

int ij;

intIDX=0;

I«printf"ps.c- k mp2_xfer \n")4
fese Get first layer s»d
loopi(hide_one)

{
%I] = m

lexe Get second layer sed
loopx(mun.outpms{u

{u j 7 _‘z‘m»lil[l]] = xhat{IDX++];
}

} f+ end k_mp2_xfer 4

.Y

int k_mp3 xfer()

htH);x-O;
fese Get first o
loopi(” llidc.oae‘;w”

A-25

T T




looMm.mpms) L1 w[|l(|] = xhat[IDX++];

leex Get second layer x+4
loopi(hide _two)

{loop hide.one) L2.w ]+[1] xhat[IDX++);

i]=

fene Get third Iayer w4
loopi(num_outputs)

lm'p m w'w = x" »

} 7+ end k-mp3_xfes ¥

4 4

void stats(err, acc, set)
double =err;

double »acc;

int set;

double sum = 0.0;
interrcat=0;

int  «list, listsize, vec;
nt 1}, target;
n'(set—'l'RAlN){

list = trn_list;
l}m.snzes num._trn;

else {
list = tst_list;
l}ist.size = num.tst;
l{OOpi(lisLsize)
target = listfi);

loopj(num.vectors)
if (vec.numul == target)

loOIJJ(lmm-llll)m&!) L1.X{(j] = db.infvec](j};
compute_output();

if ( find_max( &db_out[vec][0], )
err_catee: # ﬁndmxm—o! num_outputs ) )

loopj(num_outputs)
sum += (db_out[vecl(j] — —Y[j)
gt o
}

if(list_size == 0){
sacc= 1.0;
oen'-OO'
l'allm,

= ( (double) ize — emr.cat)A (double) list_size);
e o

} fe cnd stats ¢

'voideomn.mm_ﬁom_m()

A-26




{

double sum;
mt LJ;

printf(*ps.c-- compute_output_from H1l \n®);

swntch (neuype) {

bmak
case 3:

break;
default: fprintf(stderr,
*compute_output_from _Hl: can‘t compute for ne* type = %d.\n", nettype);
exit (—1);

i

Iu leout ts of second hidden layer »+
loopl(hmwo) P i

1f(l.2.tpask[ ( 3
L3.X[i]=L2.Y[i] = 0.0;
continue;

sum = 0.0;
loopj(hnde.one) sum += L2 X[jl«L2.w[j}{i);
sum += L2,
L3.X[i)=L2. Y[l] = slgmoxd( sum );

}

}
f«» Compute outputs of final layer «¥
l{oopx(num_outputs)

—smask
lf(wtput.laomwu;eyle'LYh] [(;)?OFF) {
continue;

sum = 0.0;

loopj(hide_two) sum += out| yer— X(jl=output_layer— wij}[i];
sum += output_Jayer— il;

}output.layer—oY 1] = sigmoid( sum );

} I+ end compute_output_from_H1

[ 4

void compute_output_from_H2()

le sum;
int ij;

printf(*ps.c-~ compute_output_from_H2 \n*");

if(net_type # 3) {
fprintf{stderr, *compute_output_from H2: can't compute for net_type = \

$d.\n*, nettype );
exi?(—l); )

f«+ Compute outputs of final layer «¥
loopi(num_outputs)

if(L3.mask{i}==OFF) {
L3.Y[i} = 0.0;
continue;

'’

A-27



}

.t +=L3 «L3.w(jlli);
loopj(hide_two Slim §] il
L3.Y[i] = SIBI'DOId( sum );

} /= end compute_output_from_H2 #

double sigmoid ( a )
doublea;gmo

double max.exp;

max_exp = 50.0;

if (a > max_exp ) return 1.0;
if (a < —max.exp ) remum 0.0;
return 141 +exp(—-a)).

} /»+ end sigmoid =+

l 4

double symmetric_sigmoid (a)
double a; gimo

double max_exp;

max_exp = 50.0;
1f(a>max.cxp)ruurn 1.0;

if (a < —max_exp ) return —1.0;
return ((2/1 + exp(--a))) - l).
} 7+* end symmetric_sigmoid x4

l

The following structure definition and
MATRIX de muons are for tbe

ndneLFam' tion" and tion" functions
which follow “part

typedef struct src_data {
mt vec.num,
used;
} sm.dam.

MATRIX_ALLOCATOR(srcdata,matrix._src_data)
MATRIX FREE(src.data, free_matrix_src.data)

Iekn

idnet_partition: separates the database into training and test sets.

idi iy )
Il:nsxdnet.panmo?(pan.seed

srcdata »ssrc;
int  i,j, class, cat = 0, IDX;
int tm.cnt=0;

src = matrix_src.data(0,aum_outputs— 1,0,0um_vectors—1);

/«+ Compute partitions »¥
pum.tr = num.vectors
tra._list = ivector(0,oum._tra—1);

/++ Set up the class data in a format ameanable to picking randomly
from each class 4
loopij(num_outputs,num_vectors) srclil(j).used = False;
loop:(uum.veaon) {

}m:[clau][i] .vec.num = vec_num{i);




#ifdef DEBUG
printf("Vectors assigned to class 0 are:\n");
loopj(num_vecto
s oo

rintf(*\n*);
Hendif

/«x Now actually assign the vectors to partitions ##
initstive(part_seed, state, STATE_SIZE ),

loopj(num_vectors) {

while (1) {

if( src[0}{(IDX = randomy) % num_vectors)].used == False ) {
src[0}{IDX].used = True;

trn list{trn.cot} = sm[O][IDX] vec.num;
trn.cnt++;

Cnt++;

break;
}

}

}

num.tm = trncnt;

#ifdef DEBUG
ll:driittl.tf('%d vector IDs assigned.\n",cat);

#ifdef DEBUG
fprintf(stderr, *The %d vectors in trn_list are: °, num.m);

loopi(num.trn) fprintf(stderr,* ¥d *, trn_list[i]);
fprintf(stderr,” \n");

#endif

free matrix_src_data({src,0,num.outputs—1,0,aum_vectors—1);

} 7#* end idnet_partition »#

4

partition: separates the database into training and test sets.

.

void partition( trn_percent, part.seed )
doub tm_percent;
part_seed;

srcdata sssrc;

int  num.vecsfMAX.OUTPUTS];
int aumtmA{MAX.OUTPUTS];
int  num_asgn[MAX_OUTPUTS]);
int i, j, class, cat = 0, IDX;

int tm_cot=0,tstcnt = 0’

src = matrix.src.data(0,num.outputs— 1,0,num_vectors—1);
e+ determine number of vectors of each class =+
m&m; :uukm%ﬁl;lg.ﬁax(dbmt[i],wmmmﬁ)lﬂ;
#ifdef DEBUG

*The database contains %d total vectors.\n®, num.vectors);
i(num_outputs) printf(* $d in class td\n®, num.vecs(i],i);

/+x Compute partitions =4
Ioopi(num_wtpuu) num_tmAl[i) = (int) trn_percent*(double)num.vecs|i] );

#ifdef TRN

A-29




loosl(mf..nn.om puts) num_trn += aum.trAfi];
tm = jvector(0,num.tm—1);

num.st = pum_vectors — num._tm;
tst_list = ivector(0,num.tst—1);

#ifdef DEBUG
printf(*The number of vectors assigned to training by class are:\n*);
loopl(num.outpuls) printf(*%d training vectors in class %d.\n°",

#e. i'}1.11'|1A[i]. i);

/= Set up the class data in a format amenable to picking randomly
from each class ss»4
loopg(num.outputs,num.vectors) srcli]ljl.used = False;
loopi(num_outputs) num.asgn{i] = 0;

loopi(num_vectors) {
class = find_max(db_out[i),num_outputs);
src[class}{num_asgn{class}++).vec_aum = vec_numfi};

#ifdef DEBUG
loopi(num_outputs) {
‘)nntf('Vectors assigned to class %d:*,i);
oopg(num.vecs[t])
if(* %c)i -, srclillil);
P

i

#ifdef TRN
f=» Now actually assign the vectors to partitions «+
initstate(part_seed, state, STATE_S
loopi(num_outputs) {
loopj(num_tmAl[i}) {
while (1) {
if( src[i)I(IDX = random() % num.vecs(i])].used == False ) {
srcfij{IDX].used = True:
tm list[tm _cnt] = src[n][lDX] vec.num;
trn.cnt++;
cntg—+;

o4

num.tr = tn_cat;
#endif

loopi(num_sut
Joppiaom. vesst)
if( sn:[JU] .used == False ) {
tlist{tst_cnt] = src(i](j].vec.num;
tst.cat++;
cnt++;

num.ist = st cot;

printf(*\n%d test vectors assigned.®, numdist);

#ifdef DEBUG
fprintf(stderr, *The $d vectors in trn_list are: °, num.tm);

loopi(num.tm fprintf(stderr,* $d *, tr.list[i]);

mm \n*);

stderr, *The %4 vectorsg in tst_list are: *, num.ist);
num.tst) fprintf(stderr,* %d * m.liu[i]).

fpnntf(stdetr'\n').




#endif
free_matrix_src data(src,0,num_outputs— 1,0,num_vectors—1);

}
void mp3_k_xfer()

mp3 .k xfer: msl‘ets the welﬁ'hts from the layered structure
toa E;aorsuuctum or use with kalman training or saving data
toa

int IDX =0, i, j;

fun
— The kalman algorithm assumes the weight matrix is of the form
- W(dest,src);

— The thresholds are put into the weight matrix as another column.

— Thus the input vectors for each layer are augmented at the end
— with an entry of unity.

— The kalman vectoris stored in row major form starting with the
- ﬁm layer followed by the second layer and then the layer.

printf(*ps.c-- mp3_k_xfer \n");

e e ) xhalIDX 4] = L1 wiili:
n ++ H
xha‘t’ IDX++]‘:‘L 1.thetafi]; vl

ot s ot) Xhat{IDX+-+] = L2. WGl
-One ++)= W N
lex'H-] = L2 theta[i]; ult

loop:(num.out

i(hlder%‘;Bx%lL[IDX#] = L3.w[jlli];
at{IDX++] = L3.thetalil;

}
void mp2.k_xfer()

mp2_kxfer: transfers the weights from the layered structure
toaﬁveaork structure for use with kalman training or saving data
toa

int IDX =0, i, j;

Ie»
~ The kalman algorithm assumes the weight matrix is of the form
~ W(dest,src);

— The thresholds are put into the weight matrix as another column.

— Thus the input vectors for each layer are augmeanted at the end

- with an entry of unity.

-mhlrmnveaorisstomdinmwmajorfonns with the

;ﬂmhyerfouowedbymeseoondhycrmmme Iayer.
*

printf(*ps.c-- mp2_k_xfer \n®);

A-31

.




k}gg. :‘(;tuﬁ) s ) xhat[IDX++] = L1.wiliil;
}m'«’ mxijl'fl.mm[il; TR

'%“%R&“‘“‘;%(mx 1= L2.w(jlli)
0l ++]=L2, ;
}xlm'!,meNﬁ L3 et - Ul
}

void gaussian_normalize()

gaussian_normalize(): Nonmalize data so that the training set has
a mean vector of zero and a standard deviation vector of all ones, Only
the features being used are normalized.

INPUTS: aum._tm
trnlist{]
vec_eatry[]
num_vectors

nm'_n.in}ms
db_in[][}
dominant_sensor
OUTPUTS: db.in[)[]
mean[]
sdf}

*

double  *sum, *sum.2;
int vec, .
int i, j» k, Inum.inputs, target;

e printf("ps.c- gaussian_normalize \n");4

sum = dvector(0,num.inputs—1);
sum.2 = dvector(0,num_inputs—1);

if((dominant_sensor==FLIR)||(dominant_sensor==RNG)) Inum_inputs = num.inputs—1;
else Inum_inputs = num_inputs;

loopi(Inum_inputs) sum(i] = sum_2[i] = 0.0;

I+» Compute mean and sd of training data =¥
i(num.tm
m = "n-ll)zt&il;
lqﬂq;()j(num.veaors) i
target == vec_num
break;

vec::{l;l (
j(Inum_inputs)
i = doonleeci
sum_2(j] += db_in[vec}{jl=db_in[vec]{j];

}
i(inum_in
lo&m = mgi'is])lidwble) num-trm;
sdfi) = sqrt( (sum._2{i} /(double) num._tm) — mean(i}*meanfi] );
}nf (sd[i) == 0.00) sdli] = 1.00;

#ifdef DEBUG
mi( 'nemspzut;));pﬁmf(' %g *, meanli]);
m ’ ’

.\ .;
mmmm'sgd)dm)ginmw -, sdliD;
pri(Ane) T g il
#endif

A-32




I=x Now apply to all data ¥
loopi(num_vectors) {

loopj(lnum_inputs)

}db.in[i][jl = ?c‘l’b.iniillil-—mean[il)/sl[il;
}mc.dveuor(mm.O.num.in -1,
free.dvector(sum.2,0,n: nputs—1);

} 7+* end gaussian.normalize »¥

gaussian_unnormalize(); Unnormalize data.
INPUTS: num._vectors
nun_l.mfauts
db_in[]l]
dominant._seasor
mean(]
sd[]

OUTPUTS: db.in[]{}

\{roid gaussian.unnormalize()

int i, j, Inum_inputs;
F+printf("ps.c- gaussian_unnormalize \n");¥

if{(dominant_sensor==FLIR)]||(dominant_sensor==RNG)) Inum_inputs = num_inputs—1;
else Inum_inputs = num_inputs;

/s« Now unnormalize all
loopu(num.vecto:s.lnum.inputs) db.infil(j] = db.inli](jl*sd(j] + mean(j);

} fo» end gaussian.unnormalize »+

ones_normalize: Normalizes data between 1 and -1.
Must be called afier the above
gmsm.nonmhzcmuunets

INPUTS: db_in[Jf]
num._inputs
nuUm_vectofs

OUTPUT: max.value

¢{iouble ones.normalize()

int it
double max_valuel = 0.0;
double max_value2 = 0.0;
double max;
I{oopi(nnm.veaon)
loopj(aum_inputs)
if ((max = fabs(db_in{i]{j})) > max_valuel)

l{nax.valnel = Mmax;

if ((max > max_value2) && (max # max_valuel))

max._value2 = max;

A-33




}
}

fprintf{RUN_FILE, " \nones_normalize max_valuel is $9.61f", max_valuel);
fprintf(RUN_FILE,* \nones_normalize max_value2 is %9.61f°, max_value2);

I« now divide all data by the max.value ¥
if (max .valuel # 0.0)

n(num.vectom)
db-ln[lllll m-ln[lllll/m-valuel),
returm max.valuel;
} /+ end ones_normalize 4

A6 psxc

A
Y

.c: Perceptron support package with routines that are dependent
g:xtbe numbg‘rrgf Iay‘e’fsomthenelwod pe

Dennis W. Ruck, AFTT/ENG
DS-90D

#include <stdio.h>
#include <math.h>

#include <macros.h>
#include <globals.h>

double sigmoid();
double symmetric_sigmoid();
void compute_output();

um_net() Initializes data structures depending on the number
of layers.

Input: pet_t num.inputs, hide_one, hide_two, aum_outputs,
waa.in,gupe'.om, 1.H2 P

Output: Layer{], output_layer, num_states

int  ij;

wistype = WIS.TYPE.I;
loopi(num_inputs) input_mask(i] = ON;

Je printf{"psx.c- init_net \n"):¥

A-34




switch ( ) {
case 1% = hide two = 0;
num_states = num_inputs+AUM_OUtputs + nuM_outputs;
outputayer = &L H
L AL s s
—n =0 3

Lnyet[O —+num_inputs = num.inputs;
0] —eta = eta_out;
.Iayer( uyer[O].LayedOI—onum.mputs.LayedO]—mum.outptm )

case 2: lnde.two =0,
num.states = num.mpmsthnde.one + hide_one +
lnv:lc.onea-num.on&l;2 tputs + num_outputs;
yer = 3
Layer{0] = &L2;
Layet[l] =&LI;

Layer{0 —onum.outputs = pum.outputs;
Layer{0)— num_inputs = hide_one;
Layer{O]—eta = eta_out;
Layer{1]—snum_outputs = hide_one;
Layer{1]—num_inputs = num_inputs;

—sela = eta_in;
lm{lm _Iln La 0].La r{0]— num.inputs,Layer{0]— num-outputs );
malloc.laﬂ uﬂl].uyeycr[l]—mnm.m% Layer{1]— num.outputs );

case 3
num_states = num_inputsshide_one + hide_one +
hide_one+hide.two + hide_two +

Layer{0]—num_outputs = num_outputs;

Layer{0]—cta = eta_out;

Layer| 1]~ num_outputs = hide_two;
Layer{1]—num_inputs = hide_one;
Layer{]]—ecta=eta H1_H2,
Layer{2]—num_outputs = lude.one.
layet[2 -onum.mpms = pum.inputs;

mm.hycl( Layer{0],Layer{0]—num_inputs,Layer{0] —num_outputs );
::mmoc.u'hm lﬁﬁr{“'}hﬁzizmmm’uﬂ e o o

defsult: fprintf(stderr,”init_net: invalid net_type = $d\n°, net.type);
exit(—1);
break

i

}

xhat = dvector(0,num_states—1);
loopi(net_type) loopj(Layer{i]— num_outputs) Laycr{i]—mask[j] = ON;

} /+ end init_net 4

k.mpx.xfer transfer we from vector
to a layered structure ghos

void k.mpx._xfer()

~ad
v

t ij, k;
int hgx =0;
feprintf{"psx.c- k.mpxxfer \n")4

rloopk(net.type) {

/ss» Get Next Layer ssd
l{oopi(uyu[k]-onnm.omm)

A-35




- . La —owlillil = X+]:
}topyéit([k ye 1 il;“:'ﬂ-lnw“)’(”yle;dkl w(jl(i] = xhat[IDX++]
}

} 7+ end k_mpx xfer 4

£
Y

mpx_k_xfer: transfers the weights from the layered structure
toazcaorsuwnmforuscwi kalman training or saving data
to a file.

\{toid mpxk_xfer()

int IDX=0,i,j, k;
Iex

- The kalman algorithm assumes the weight matrix is of the form
- W(dest,src);

~ The thresholds are put into the weight matrix as another column.
— Thus the input vectors for each layer are augmented at the end
— with an entry of unity.

- The kalman vector is stored in row major form starting with the
—~ first layer followed by the second layer and then the third layer.

»f
/+printf("psx.c— mpx_k_xfer \n");¥

loopi(La: rnq){ ) {

loopi(Layer{k]— num_outputs
loopi L’){“(k —+num_inputs) xhat{(IDX++] = Layerik]—w(j}[i};
xhatf(lD ﬁ]lhyer[k]_.m)em[i]; ] 1—wljli]

} 7+ end mpx_k_xfer ¥

) 4

'\{roid compute_output()

default; f)rin(f('compute_output: can't perform calculation for net_type = \
td\n", net.type);

}
} /= ead compute_output ¥

*

'\{foid compulte_outputx()

double sum, «mask;
int i, k;

?wﬂ(ww)
loopi(Layer{k]—num.outputs)
if(Layer{k}—mask(i}==OFF)

A-36




begaveoe

oonnnue.

1) mask = input_mask;
elsemask= ycr[k«rl]—omuisk
wj(uﬁycﬁ? L a Layet{kl (lilemask{j);
SUm += 1—Xlil* — w[j){i)+mask{j];
sum += Layer{k)—theta[i);

#ifdef LINEAROUT

if(k==0) Layer{k]—+Y[i] = sum;

Ise Layer{k}— Y[i] = sigmoid( sum );
#e:dif yerfk]— Y[ g

#ifdef SYM_SIGMOID L
kﬁlyfer[k]—oY[i] = symmetric.sigmoid( sum );

ekl Vi1 = sigmaid sum)
— Y[i] = sigmoid( sum );
-

#ifdef INP.SYM L.
ifq:fa(muypc- 1)) Layer{k]— Y[i] = symmetric_sigmoid( sum );
#endi

}if(k#O) Layer{k—1]—X([i} = Layer{k]— Y[i];

}
} /* end compute_outputx ¥

l

-

void nulloc.hyel'( L, inputs, outputs )
struct layer sL.
1{m inputs, outputs

/+ printf("psx.c- malloc_Iayer \n")4

}

L—w = dmatrix(0,inputs— 1,0,outputs—1);
L—dw = dmatrix(0,inputs—1,0,outputs—1);
L—w'fou-mfix(o.pi‘nnsuu—}iq. “1;

L~ X = dvector(0,inputs—1);
L-Y= dmﬁo outp:lt:ts— 1);

»

void display_input(number, max, size)

int number, size;
double max;

FILE »image;

c int num_in = 0,
char infile{20);
char command{80];

num_in++
spﬁmf(inﬂle. *$g%dss”®, *IN®, num.in, *.rec*);
image = fopen(infile, "w*);

A-37




loopj(num_inputs)

temp = ((db.inlnmnberlliltmx)*sdlil) + mean(j];
image, *$10.6£ *, temp);

2close( )

pﬁnd(eomnnnd, *%¥s¥sts®, "cp *,infile, * tempIN*);
‘g:tcm(oommmd)

Mﬁlfay(slze, *tempIN®);
}

void displa -outpul(max, size)
doublepm:x:
int size;

FILE »image;

double temp;

int i;

static int num_out = 0;
char outfile[20];

char command([80];
double sqrt();

DUM_OUt++;
sprintf{outfile, * $s%d%s ", "OUT*, num._out, * .rec*);

llmqe = fmn(wtﬁh. "w" )v
loopi(num_outputs)

{
:ql;yerlo—di#max)tsdi +M.;
lcmp_ .( image, ] ] [] . ’[]) (l]

ﬁ)fdef ﬁ"é&‘ :

spnntf(oommand, 'ts%s%s' *cp °, outfile, * tempOUT");

dgﬁlay(sm, 'tempOUT').

display.c
convents a .gra fike (o rie and
%phys it in openwindows using

L I I -

VOld dxsplay( X, filename)
{char ﬁleum\e[],

char command{80);
pﬁntf(cmnmd. 'tststs' *cp °, filename,” temp.rec®);
symm( ﬂoat_gray temp.rec temp.red®);
sprintficommand, "$s%d td°, "graytorle -o temp.rle *, X, X);
commmd.) temp.r ed)
spnntf(co:mmd.'tslsts' ‘mv t rle °, filename,".rle’);
systemy(command -

'3
spﬁmf(conlmd, 888%8°,"x1i -quiet -zoom 300 °, filename, *.rle &°);
system{command);

A-38




A.7 utils.c

f -
7

Utility Functions

#include <stdio.h>

#ifndef NEXT
#include <malloc.h>

¥else

extern char + malloc();
¥endif
#include <math.h>
#include <string.h>

#include <macros.h>
#include <globals.h>

/«% External System Calls =4
extern char » v();
double O;

/== Internal Functions 4

double 3
char + make_name();

1.

double
int len;

int find_max( data, len )
=data;

double max_val = xdata;

int max_idx =0;

mti;

loopi(len) if ( »(data+i) > max_val )

max.val = *(data+i);
max.idx = i;

return max._idx;
} 7+ end find_max #

i

.

void system.check()
len (ﬁcks the system for reliable operations =4
static char  sc.name{80] = *system_check1A992°;
FILE »3c;
double x.out = 123.321;
double x.in;

printf(*utils.c-- system_check \n");

/» 1/O Check #
if( (sc = fopen(sc_name, “w*)) == NULL)

fprintf{ stderr, "system_check: can't open $3 for writing.\n\

FATAL Error.\n®,scname );

A-39




exit (—1);
rintf{ sc, REAL_FMT, x_out );
close (sc);
if( (sc = fopen(sc.name, "r*)) == NULL)

fprintf( stderr, *system_check: can't open $s for reading.\n\
FATAL Error.\n*, scname );
exit (—1);

fscanf( sc, REAL_FMT, &x.in );
if( x-out 7% x.in )

fprintf( stderr, “system_check: Floating Point I/0 Error.\n\
FATAL Error.\n");
ink( sc.name );
exit (—1);

unlink ( sc.name );
printf( "system_check: OK.\n");
} #+ end system-check ¥
I+» Procedure to sort an input array =4
void Qpartition ( data, rank, split, lower, upper, new.1, new_u )
Pt l,:l?:“’ p ppe
int *

mg:ster int spht.
lower;
mt upper,
int snew.;
int sncw.;
register int 1=lower,1=upper
register int temp

printf("utils.c-- Qpartition \n");

do {
wlnle( rank(i]] < datals ht];
while ( split <datal i yi——:

020ty

rank[n] nnk[i],
{ank[,u = temp;

yJ—_y

} while i<j)
snewd = j;
*NEW.L = i,

}

/== Recursive quicksort =4
void data, rank, upper, lower )
double sdata;

int srank;
int upper, lower;
int  split;
int  new.up, new.low;

it temp;
it i

printf{*utils.c-- quicksort \n®),

A-40




if (upper—lower > 1) {
ln = rank[(upper+lower)/2;
ition( data, rank, split, lower, u per, &new low, &new.up );

ksort( data, rank, upper, new.up );

quickson( data, rank, new.low, lower ),

Ise

}lg (upper — lower == 1)

if ( datafrank[upper}] < data[rank[lower]] ) {
temp = rank[upper);
rank[upper] = rank[lowet],
rank{lower] = temp;

}

void sort( data, num.elements, rank )
double =data;
int num.elcments,
int srank;

== The output is the rank of integers, rank, which gives the sorted
order of the the rank of doubles, data. That is, thesmallestcmsym
the array data is index rank[0)].

it i
printf("*utils.c-- sort \n");

loopi(num_clements) rank(i] = i;
quicksort( data, rank, num.clements—1, 0 );
}

»

char » pame_fname( foame )

{

char = out.name;

char var_name[256];

char out.tem [256];

char » var

int fnlen, vn.lcn, vpJen, out_len;

it i
printf(*utils.c-- parse_fname \n®);

fn_len = strien(fname);

Iex See if it starts wub adollar sign =4
if( foame[0) == *$*

In expmd environment varigble «¥
wlnle( foamefi] # /')

;rar.nunc[i-—l] = fnamefi];

var.nameli—1]= '\0’;
if( (var_path = getenv(var_name)) == NULL)

printf(*parse_fname: environment ..iable $%s. Not defined®,

var.name);
exit (—1);

}u Now combine into the full path »+

vnen = strien(var_.name);
vpJen = strien(var_path);

A-4]




aopi(vpJen) outtempli] = var_path[i);
for(i=0;i<fnlen—vn_len—1;i++)
out_temp(i+vp.len) = fname(i+va_len+1);
outtemp[i+vplen} = '\0;

else
/= copy input to output
loop:(p .lcg:lp)a:)bul.tem:ﬁ:)] p?:ame[:],

I=x Now allocate memory for out.name »+¥
if( (out_name = malloc( (out_len = strien(out_temp))+1 )) == NULL)

printf(*parse_fname: out of memory.\n®);
exit (—1);

oopi(out_len+1) out_name[i) = out_templi);
return out_name;
} /+ end parse_fname #

l

char- oken( str )
FILE:%?’;J

It
Returns the next string of characters in stream, STR, which is separated
with white space.

*

{

char temp[1024);
har = tk_ptr;

int i

/=+ Find first character of token =4
while(1)

{
if( (temp[0] = fgetc(str)) == EOF) return NULL;
}'f( (templ0) # * ') && (temp[0] # ’ \n’ )) break;

i=1;

while(1)

{tcm pli] = fgew(str).
swntch (templi])

case ’ ':
case ‘\n’: tempfi)="'\0"';

break;
case EOF : temp[i] = ' \0’;
break;
default : break;

if( tempfi] == 0" ) break;
4

if{ (tk_ptr = malloc( strien(temp)+1 )) == NULL){
fprintf( stderr, *get_token: out of memory.\n®);

exit (-m . .
Joopi( strlen({temp)+1 ) tk_ptr{i] = tempfi];
return tk_ptr;

} I+ end gettoken ¢

A-42




double gaussian( mean, var )
double mean, var;

gaussian: returns a gaussian randon variable sample with specified
mean and variance. The central limit theorem is invoked to
generate the sample.

int aum_rvs = 20, i;
double sum=0.0, ave, norm, Z, Y;

Iexnx

- mnla sum of random variables that are uniform between
xxny ’

loopi(num.rvs) sum += drand48();

ave = sum /(double)(num.rvs);

Jex
— AVE is a rv with mean = 0.5 and variance = 1/(12«num_rvs);
; now normalize AVE

E 3
Z = (ave—0.5)/sgrt(1.0/(12.0%(doubleXnum.rvs)));

/nn

;Now unnormalize to desired mean and variance
*

Y = mean + sqri(var)+Z;

return Y;
}

f

;:[xar smake_name( num, root, ext )
int num;
char »root, »ext;

make_name: Function to create a file name given the root,
a number, and the extension. The file name is of the form:

root number "." ext

*%

char +fname, num.image[80];
printf("utils.c-- make_name \n");

sprintf( num.image, *%d°, num );

fname = malloc( strien(root)+strien(num_image)+strien(ext)+2 );
strepy( faame, root );

strcat( fname, num_mage );

strcat( fname, *." );

strcat( fname, ext );

return fname;
} 7+ end make.name 4

f)

char + make_file( root, ext )
char =root, sext;

make_file: Function to create a file name givea the root

A-43

*




and the extension. The file name is of the form:
root "." ext

char  sfname, num_image[80];

fname = malloc( strlen(root)+strien(ext)+2 );
strcpy( root );
( fname,

I‘.)-

strcal( fname, ext );

return fname;
} /= end make._file ¥

l o<

Boolean find(run_file, var_name)
FILE »run._file;
char svar_name;

int cnt, var.en,
char sur{80]; B
printf(*utils.c-- find \n*);

varJength = strlen(var_name);
while(1)
if((str{O}=fgetc(run_file))==EOF) break;
1f(str[0)=var_nune[01) {
wtule(l) {
if( ((stricnt}=fgetc(run_file))==EOF) ||

(cnt>varJength) ) break;
cnt++;

Jel ='\0';
:ftgt‘;'acrmp?marm)nm return True;

}

return False;
} /ax end find »4
double distance2( x1, x2, len )

dotlble x1(], x2[};
len;

distance2: compute Euclidean distance between to vectors

*»

double sum;
int i;

printf(*utils.c-- distancez \n*),

sum = 0.0;
loopi(len) sum += (x1(i]—x2[i])*=(x1[i)}—x2[i});
return sqrt(sum);

} /»+ ead distance2 «4

#ifdef NEXT

A-44




c{iouble drand48()
long lval;
ival = random()%2147483648;
return (double)lval/2147483648.0;
void srand48(seed)
long seed;
{mndom(md);
ndif

= display.c

* convens a .gra file to ric and

» d"n‘gplays it in openwindows using
* xli.

void display(dimension, filename)
int dimension;
char filename(};

char command(80];

) rmtf(conunand, $s%s%s°®, "cp °, filename," .gra temp.rec®);
system(co
system( " float qray temp.rec temp.red®);
swm:h(dnmensnon){

case 128:

;isktem('graytorle -0 temp.rle 128 128 temp.red®);

case64
system( graytorle -o temp.rle 64 64 temp.red");

ensc32
system("graytorle -o temp.rle 32 32 temp.red");

default:
printf(*1 don't know what size the gra image is.®);
s}ystcm( *rleflip -v -0 hold.rle temp.rle*);

sprintf(command,* $s%s%s*,*mv hold.rle °, filename,*.rle");
Syste"K )t

sprintf(command, *$s¥s%s","x1i -quiet -zoom 300 -smooth -smooth °, filename, *.rle&");

system(command);
systeﬁ m ; .red* ),)
ystemy(* rm emg we
:yslem( *rm *.rle*);

A-45




A9 globals_h
texes Global Variables »s4

int num_inputs, hide_one, lude.two. num_outputs, temp
pu i, tpu -outputs,

double eta.in, eta_out,

int net_type;

int wis_type = WTS_TYPE.I;

int num_layers;

int iterations = 0;

int initial_seed, part_seed, trn_seed;
int num_states;

int num_vectors = 0;

int sftr.list;

int svec_num;

int svec.entry,

int num_trn = 0, »trn list;

int num._tst = 0. *ist_list;

int norm_type;

int dominant._sensor = 0;

int num_flir, «flir Jist;

£ num.rmg, »mg list;

inc urrent_vector,; .

int max_iterations, output_interval,
int batch_size = 1, batch.cnt = 0;

char state[STATE _SIZE);

double trn_frac;
double alpha;
double max_value;
struct layer

doub)
doublehD.mn[MAX.OUTPUL':‘i]dn
struct soutput_layer, » H
double -y:rdb.in yer

double ==db_out;

double »=+id_out;

double *mean, »sd;

/++ Global Data for Kalman Training »
double =*R, d[MAX.OUTPU’l‘S]. z[MAX.OUTPU’I’S].

A.10 macros.h

F ™

Convenieat Macros for Perceptron Package

Iexx MACROS 4
#define REAL float

#ifndef GCC
#define INT.MAX (2147483647)

A46




#else /I« GCCH
#include <limits.h>
#endif

#ifdef VMS
#define unlink delete
#endif

#ifdef LEO
#define REALFMT "%g*
#else

#define REAL_FMT *%1g*
#endif

#ifdef NEXT

#undef REAL_FMT
#define REAL.FMT *%1£°
#endif

#ifdef VMS

#undef REAL_ FMT
#define REALFMT "¢1f*
#endif

#define Boolean int
#define False 0
#define True 1

/=« Dominant Sensor Definitions =+
#define SINGLE 0

#define FLIR 1

#define RNG 2

le+ Mask Definitions =¥
#define OFF 0.0
#define ON 1.0

char  junk_response[256);

#define fshp.lme(A) fgets(junk_response, 256, A)

#define ski gasg%m nse)

#define rloopl(A) for(:a(A)— 1 ,l>0'.l——)

#define rloopi(A) for(j A)-lil —=)

#dcfinc rloopk(A) f P

#define rloopl(A) for(l-(A)— LI>0I—~-)

#define for(m=(A)—T;m>0;m—-)

#deﬁne rloopn(A) fot(n-(A)— 1 ,n>0',n——)

&21‘0 Hoopht (ﬁ,)Bﬁ)"ig l(l-(A) 73& ) fi )—-1j20;j—-)
ne o - 1;1>0;i—-) for(j=(B)— —

EE b =
ne ++

#define IoOpK(A) for(kmik X,lm)

#define loopl(A) fot(l-O,l(A,l-ﬂ)

#define loopm(A) for(m=0;m<A;m++)
#define loopn(A) fo:(nsO;n<A.n++)
#define loopp(A) for(

#define loopij(A,B) for(n-8;|<A.|++) for(j=0,j<Bij++)

#define MALLOC(A,B,C.D) if({A=(C »)malloc((B)+sizeof(C)))==NULL) { \
fpﬁntf(std;tr. streat(D," : insufficient memory\n®));\
exit(—-1);

#define CREATE FILE(A,B,C) if((A=fopen(B,*w*)) == NULL) { \

printf(su}vw(c,': can't open for writing - $s8.\n")B);\
exit (—1);

#define OPEN_FILE(A,B,C) if((A=fopen(B,"r*)) == NULL) { \

printf(strcat(C,* : can't open for reading - %s.\n")B);\
exit (—1);

#define idx (NH )

#define Sn (A)=(B)) < 1E-6)?71:0)

#define IABS(A) (( t)((-(A)<(A))7((A)) (-(A))))

fe= Dividin, b{ilwmmwcmd ive same results «4

#define A) ((int)Xran1(A)«(float)INT MAX)V100)
fss All of these are on the definition of "layer” 4
#define M 1500

#define MAX.NODES 50

A47




#define MAX_H1 NODES 558

#define MAX_H2 NODES

#define MAX_OUTPUTS 1500
#define MAX_VECTORS 10000
#define STATE.SIZE 256

#define WIS.TYPE_MSF 2 /» new weights file 4
#define WIS.TYPE.1 1/+ pew ts file ¥
#define WTIS.TYPE.O0 0 /+ old weights file 4

#definc TRAIN 0
#define TEST 1

#define THREE_LAYER 3
#define TWOLAYER 2

#define MATRIX_ALLOCATOR(DATA . TYPE,FCN.NAME) \
DATA .TYPE «»FCN.NAME(nrl,arh.nclnch) \
int nrl,arh,ncLnch; \
{\
inti; \
DATA.TYPE »+m; \

\
m=(DATA_TYPE »») malloc{(unsigned) (nrh—nri+1)+sizcoRDATA_TYPE»)); \
if ('m) nrerror(®*allocation failure 1 in matrix()*); \
m—=nrl; \

\
for(i=arli<nrh;i++) { \
m{il=(DATA_TYPE =) malloc((unsigned) (nch—ncl+1)+sizeoRDATA.TYPE)); \
if (!m{i]) nrerror(®allocation failure 2 in matrix()®*);\
} \m[i] —=ncl; \

return m; \

#define MATRIX.FREE(DATA TYPE,FCN.NAME) \
void FCN.NAME(m,arl,nth,nclnch) |\
DATA_TYPE »»m;

int arl,nrh,nclach; \
t inti; \ \

for(i=nrh;i>nrl;i——) free((chars) (mfil+ncD); \
free((char+) (m+arl)); \

A.11 globals.h

/exxs Global Varisbles tad hide
extern int numLinputs, hide.one, _two, num._outputs, temp_outputs;
extern double eta.in, eta_out, eta H1_H2;
exmmtnet.type

extern int wis._t

extern int yen
extern int iterations
exlemm(mhhl.leed.pm.seed.un.seed
extern int num_states;
extern int num_vectors ;
extern int »fir_list;
exmg.vec.mm,

extern int svec.entry;

extern int pum.tm , ctrn.hst,
extem int num.tst , #
emrnintnorm.type

extem int dominant_sensor ;

A-48




extern int num.flir, «flir_list;

exiern int num.mg, «mg.list;

extern int current_vector;

extern int max_iterations, output.interval;
extern int batch._size , batchcat ;

extern char state[STATE_SIZE];

extern double trn_frac;
extern double alpha;
extern double max_value;

extern struct layer {
it sum.inputs;
int num_outputs;
cta;
double ssw;
double  »»dw;

extern double »xhat;

extern doubth.mn[MA)t(j.errPUumye]:[3]
extern struct layer =output_layer, = H
extern double »+db_in;

extern double s»db_out;

extern double ##id_out;

extern double smean, »sd;

s+ Global Data for Kalman Training »+
extern double =+R, d[MAX .0 1, 2lMAX_OUTPUTS];

A.12 makedata.c

f

NAME: makedata.c
INVOKED: makedata classlist listsize Imagesize #_classes outputfile

DATE: 25 May 92

DESCRIPTION: This routine generates the data file used by the network.
WRITTEN BY: Dennis L. Krepp

MODIFIED:;

SUBROUTINES CALLED:

FUTURE MODIFICATIONS/BUGS:

To use images change the size of
mem”.

int image{PIXELS];

A-49




int temp;
char outfile[30), filename[30), tempfile[30);
char »strepy();
if (argc # 6) {
prinif(* ! 1! The command line should be !!!:\n\n makedata classlist_file #_files_in_list

#_classes Output_file_name\n"),
exit(0);

Set Up Files ¢
if (classfile = fopen(argv(1), *r*)) == NULL)

printf(*I can't open the classlist_file®);
fush(stdout);
exit(—1);

M=atoi(argv(2]); /« M = Number of images in classlist file ¥
ol = woA gD

= alo! M
strepy(outfile, argv[S]);

/swsrue Open output file for writing sssuesd
if ((fout = fopen(outfile,*w*)) == NULL)

{
intf(*I can't open the output file §s \n",outfile);
ush(stdout);
exit(—1);

}

printf(*Output file: %s \n\n*,outfile);fMush(stdout);
‘fpnnlt' (fout, "$d\n",in S

printf(fout, 'td\n'.o\;t”p?nzs);

A

1. Read data_list_file for filename
2. Write exemplar number to output file

3. Copy input file to output file

f?t(k:l; k<M; k++)
fscanf(classfile, *$s\n°*, filkname);
printf(* Input file: $%s \n°, filename);fflush(stdout);

fscanf(classfile, " $d°, &class);
printf(*Class is: %d\n*,class);

fprintf(fout, "$d\n", k);

intf("Exemplar number: %$d\n\n®,k);
ush(stdout);

if ((1acein = fopen(filename, *r")) == NULL)
éxmilt?f(‘l- can‘t open the input file®);Mush(stdout);

'’

while (fscanf{facein, *$d°, &iemp) == 1)
fout, *$ 8.4f * (floattemp);

leses Write Class data to file sesd
for(jmoutputsj> 1j——)
clags w= )

A-50

Image_size(pixels)




intf(fout,* ¢ £ *, 0.90000);
if(m “;(éj) ‘
) fprintf(fout,*$ £ *, 0.10000);
fprintf(fout, *$s°, "\n\n");
fclose(facein);

fclose(fout);
fclose(classfile);

}

A-51




Bibliography

. Abbas, H. and M. Fahmy. “A Neural Model for Adaptive Karhunen-Loéve Transformation

(KLT),” IJCNN, II:975-980 (1992).

. Aibara, Tsunehiro er al. “Human face recognition by P-type Fourier descriptor,” SPIE Visual

Communications and Image Processing, 1606:198-203 (1991).

. Baldi, Pierre and Kurt Hornik. “Neural Networks and Principal Component Analysis: Leamning

from Examples Without Local Minima,” Neural Networks, 2:53-58 (1989).

. Bouattour, ef al. “Neural Nets for Human Face Recognition,” IEEE IJCNN, II1:700-704 (June

1992).

. Cottrell, Garrison W. and Janet Metcalfe. EMPATH: Face, Emotion and Gender Recognition

Using Holons. 2929 Campus Drive, San Mateo, CA, 94403: Morgan Kaufmann Publishers, Inc.,
1991.

. Cottrell, Garrison W. and Paul Munro. *“Principal component analysis of images via back propa-

gation,” SPIE Visual Communications and Image Processing, 1001:1070-1077 (1988).

. Cottrell, Garrison W. et al. “Learning Internal Representations from Gray-Scale Images: An

Example of Extensional Programming,” Proceedings of the Ninth Annual Cognitive Science
Society Conference, Volume unknown:461-473 (1987).

. Damasio, Antonio R. “Prosopagnosia,” Trends in Neuroscience, 8:132~-135 (1985).

9. Duda, Richard O. and Peter E. Hart. Pattern Classification and Scene Analysis. New York: John

10.

11

12.

13.

14.

15.

16.

17.

18.

Wiley and Sons, 1973.

Farahati, Nader ef al. “Real-time recognition using novel infrared illumination,” Optical Engi-
neering, 31(8):1658-1662 (August 1992).

Fleming, Michael K. and Garrison W. Cottrell. “Categorization of Faces Using Unsupervised
Feature Extraction,” /EEE International Joint Conference on Neural Networks, 2:65-70 (1990).
Foldidk, Peter. “Adaptive Network for Optimal Linear Feature Extraction,” JEEE International
Joint Conference on Neural Networks, 1:401-405 (1989).

Gay, Kevin P. Autonomous Face Recognition. MS thesis, AFIT/GE/ENG/2D. School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1992.
Geschwind, Norman. “Specializations of the Human Brain,” Scientific American, 107-120
(September 1979).

Goble, James R. Face Recognition Using the Discrete Cosine Transform. MS thesis,
AFIT/GE/ENGP1D-21. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1991.

Harmon, et al. “Machine Identification of Faces,” Pastern Recognition, 13:97-110 (1981).

Kung, S. and K. Diamantaras. “A Neural Network Learning Algorithm for Adaptive Principal
Component Extraction (APEX),” JEEE ICASSP, 1.861-864 (1990).

Lambert, Lawrence C. Evaluation and Enhancement of the AFIT Autonomous Face Recognition
Machine. MS thesis, AFIT/GE/ENG/87D-35. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1987.

BIB-1




19.

20.

21.

22.

23.

24.

26.
27.

28

29.

31

32.

33.

3s.

Lei, Xu. and Alan Yuille. “Robust PCA Learning Rules Based on Statistical Physics Approach,”
IEEE IJCNN, I:812-817 (June 1992).

Meadows, J. C. “Varieties of Prosopagnosia,” Journal of Neurology, Neurosurgery, and Psychi-
atry, 498-501 (1974).

Nakagawa, S.ér al. “Dimensionality Reduction of Dynamical Patterns using a Neural Network,”
Advances in NIPS, unk:unk (1990).

Oja, Erkki. “A Simplified Neuron Mode! as a Principal Component Extractor,” Journal of
Mathematical Biology, 15:267-273 (1982).

Oja, Erkki. “Data Compression, Feature Extraction, and Autoassociation in Feedforward Neural
Networks,” Artificial Neural Networks, unk:737-745 (1991).

Oja, et al. “Learning in Nonlinear Constrained Hebbian Networks,” Artificial Neural Networks,
unk:385-389 (1991).

. Payne, Tanya et al. “Backpropagation Neural Networks for Facial Verification Update,” Los

Alamos National Laboratory (1992 Unpublished).

Press, et al. Numerical Recipes In C. Cambridge: Cambridge University Press, 1988.

Robb, Barbara C. Autonomous Face Recognition Machine Using a Fourier Feature Set. MS
thesis, AFIT/GE/ENG/87D-35. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987.

Rolls, et al. “The effect of learning on the face selective responses of neurons in the cortex in the
superior temporal sulcus of the monkey,” Experimental Brain Research, 76:153-164 (1989).
Ruck, Dennis W. Characterization of Multilayer Perceptrons and their Application to Multisensor
Automatic Target Detection. PhD dissertation, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1990.

. Runyon, Kenneth R. Face Recognition System. MS thesis, AFIT/GE/ENG/92D. School of

Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1992,

Russell, Robert L. Performance of a Working Face Recognition Machine Using Cortical Thought
Theory. MS thesis, AFIT/GE/ENG/85D. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1985.

Samal, Ashok and Prasana A. Iyengar. “Automatic Recognition and Analysis of Human Faces
and Facial Expressions: A Survey,” Pattern Recognition, 25:65-77 (1992).

Sander, David D. Enhanced Autonomous Face Recognition Machine. = MS thesis,
AFIT/GE/ENG/89D-19. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1989.

. Sanger, Tercnce. “Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural

Network,” Neural Networks, 2:459-473 (1989).

Smith, Edward J. Development of an Autonomous Face Recognition Machine. MS thesis,
AFIT/GE/ENG/86D-36. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1986.

Suarez, Pedro F  Face Recognition with the Karhunen-Loeve Transform. MS thesis,
AFIT/GE/ENG/1D-54. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1991.

BIB-2




37.

38.

39.

41.

42.

Tarr, Gregory L. Multi-Layered Feedforward Neural Networks for Image Segmentation. PhD
dissertation, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1991.

Tou, Julius C. and Rafael C. Gonzalez. Pattern Recognition Principles. Reading, MA: Addison-
Wesley Publishing, 1974.

Turk, Matthew A. and Alex P. Pentland. “Eigenfaces for Recognition,” Journal of Cognitive
Neuroscience, 1-28 (September 1990).

Turk, Matthew A. and Alex P. Pentland. “Recognition in Face Space,” SPIE Intelligent Robots
and Computer Vision IX: Algotithms and Techniques, 1381:43-54 (1990).

Valentine, Tim and Andre Ferrara. “Typicality in Categorization, recognition and identification:
Evidence from face recognition,” British Journal of Psychology, 82:87-102 (1982).

Wu, Chyuan Jy and Jun S. Huang. “Human Face Profile Recognition by Computer,” Pattern
Recognition, 23:255-259 (1990).

BIB-3




Vita

Captain Dennis L. Krepp was born on March 6, 1958 in Ephrata, Pennsylvania. He graduated
from Warwick High School in Lititz, Pennsylvania in 1976. Capt. Krepp entered the Air Force in
May, 1978 as a Munitions Systems Specialist. He served three years at Davis-Monthan AFB, Arizona
with the 355th Equipment Maintenance Squadron, and three years at Lowry AFB, Colorado with the
3460 Technical Training Wing. He entered the Airman’s Education and Commissioning Program in
August, 1984 and completed a Bachelor of Science degree in Electrical Engineering at the University
of Colorado in May, 1987. He served three years with the Electronic Systems Division at Hanscom
AFB, Massachusetts before entering the School of Engineering, Air Force Institute of Technology in
June, 1991. He is married to Karen (Muije) Krepp of Green River, Wyoming and has two children:
Michelle Lynn, age 11, and R. Adam, age 9.

Permanent address: 1069 Furnace Hill Pike
Lititz, Pennsylvania 17543

VITA-1




Form Approved

REPORT DOCUMENTATION PAGE OMB o 0704 G188

SRR PP I (A RO SN LA A AR T N R S T T L TR T T T L e T ey P R A

e, ra iy ey e R L L

oyt e e e P R

L 'L £ 1 O R T P g . .
C1. AGENCY USE ONLY ieive biaoki ]2 REPORT DATE l T REPORT TYPE AND DATES COVERED
“ December 1992 Master’s Thesis
T A ey N iha: he het RN
Face Recognition With Neural Networks
Dennis L. Krepp, Captain, USAF
Air Force Institute of Technology o
WPAFB OH 45433-6583 AFIT/GE/ENG/92D-23
o b"' . LR :?«-—; (N - N DR
AGie YT MR
Maj Rodney Winter
Govt Agey
9800 Savage Rd

Ft Meade, MD 20755-6000

Distribution Unlimited

This study investigated neural networks for face verification and classification. The research concentrated on
developing a nevural network based feature extractor and/or classifier to perform authorized user verificatio' in a
realistic work environment. Recognition accuracy, system assumptions, training time, and execution time were
analyzed to determine the feasibility of a neural network approach. Data was collected using a camcorder and
two segmentation schemes: manual segmentation and motion-based, automatic segmentation. Data consisted of
over 2000, 32x32 pixel, 8 bit gray scale images of 52 subjects; each subject had two to ten days worth of images
collected. Several training and test sets were created and then used to train and test the following networks:
a backpropagation network using the raw data as inputs; a backpropagation network using Karhunen-Loéve
Transform coefficients, computed from the raw data, as inputs; and a backpropagation network using features
extracted by an identity network as inputs. The classification networks performed well on constrained, single
day captured, data bases but performed poorly on data gathered over multiple days . For multiple days, a
verification network using a single hidden layer with backpropagation obtained 95% verification accuracy and is
suitable for use in a face verification system.

14 QUi (L Trard, T B - TSN AR R T S AGES
face recognition, neural networks, identity networks, backpropagation, user verifica- 122
tion ihoue el COD
17 SECURITY (LASHITICATION | 15 SFCURITY CLASSIHILATION 119 StCURITY CLASG- ATION ] 0 - A71QONJF ABS TRAGT
0F RFPORT Of THIS PAGE TEOABCTRACT
UNCLASSIFIED UNCLASSIFIED l UNCLASSIFIED UL

J"..

’

e I Sy P T I




